Frontiers in pediatrics
-
Frontiers in pediatrics · Jan 2020
ReviewMoral Distress in the Neonatal Intensive Care Unit: What Is It, Why It Happens, and How We Can Address It.
Moral distress is prevalent in the neonatal intensive care unit (NICU), where decisions regarding end-of-life care, periviable resuscitation, and medical futility are common. Due to its origins in the nursing literature, moral distress has primarily been reported among bedside nurses in relation to the hierarchy of the medical team. However, it is increasingly recognized that moral distress may exist in different forms than initially described and that healthcare professions outside of nursing experience it. ⋯ Differences in opinions and approaches between members of the medical team can strain relationships and affect each individual differently. It is unclear how the various types of moral distress uniquely impact each profession and their role in the distinctively challenging decisions made in the NICU environment. The purpose of this review is to describe moral distress and the situations that give rise to it in the NICU, ways in which various members of the medical team experience it, how it impacts care delivery, and approaches to address it.
-
Frontiers in pediatrics · Jan 2019
ReviewBronchopulmonary Dysplasia: Crosstalk Between PPARγ, WNT/β-Catenin and TGF-β Pathways; The Potential Therapeutic Role of PPARγ Agonists.
Bronchopulmonary dysplasia (BPD) is a serious pulmonary disease which occurs in preterm infants. Mortality remains high due to a lack of effective treatment, despite significant progress in neonatal resuscitation. In BPD, a persistently high level of canonical WNT/β-catenin pathway activity at the canalicular stage disturbs the pulmonary maturation at the saccular and alveolar stages. ⋯ Following a premature birth, hypoxia activates the canonical WNT/TGF-β axis at the expense of PPARγ. This gives rise to the differentiation of fibroblasts into myofibroblasts, which can lead to pulmonary fibrosis that impairs the respiratory function after birth, during childhood and even adulthood. Potential therapeutic treatment could target the inhibition of the canonical WNT/TGF-β pathway and the stimulation of PPARγ activity, in particular by the administration of nebulized PPARγ agonists.
-
Frontiers in pediatrics · Jan 2019
ReviewXpert MTB/RIF Ultra for Tuberculosis Testing in Children: A Mini-Review and Commentary.
Tuberculosis (TB) remains a significant, yet under-recognized cause of death in the pediatric population, with a WHO estimate of 1 million new cases of childhood TB in 2016 resulting in 250,000 deaths. Diagnosis is notoriously difficult; manifestations are protean due to the high proportion of cases of extra-pulmonary TB in children, and logistical problems exist in obtaining suitable specimens. These issues are compounded by the paucibacillary nature of disease with the result that an estimated 96% of pediatric TB-associated mortality occurs prior to commencing anti-tuberculous treatment. ⋯ Ultra provides increased analytical sensitivity when compared with the initial Xpert assay in vitro; a finding now also supported by six clinical studies to date, two of which included pediatric samples. Here, we review the published evidence for the performance of Ultra in TB diagnosis in children, as well as studies in adults with paucibacillary disease providing results relevant to the pediatric population. Following on from this, we speculate upon future directions for Ultra, with focus on its potential use with alternative diagnostic specimens, which may be of particular utility in children.
-
Frontiers in pediatrics · Jan 2019
ReviewAssessing the Microcirculation With Handheld Vital Microscopy in Critically Ill Neonates and Children: Evolution of the Technique and Its Potential for Critical Care.
Assuring adequate tissue oxygenation in the critically ill, but still developing child is challenging. Conventional hemodynamic monitoring techniques fall short in assessing tissue oxygenation as these are directed at the macrocirculation and indirect surrogates of tissue oxygenation. The introduction of handheld vital microscopy (HVM) has allowed for the direct visualization of the microcirculation and with this has offered insight into tissue oxygenation on a microcirculatory level. ⋯ As a next step, reference values for microcirculatory parameters need to be established, while also accounting for developmental changes. Finally, studies on microcirculatory guided therapies are necessary to assess whether the integration of microcirculatory monitoring will actually improve patient outcome. Nevertheless, HVM remains a promising, non-invasive tool to help physicians assure tissue oxygenation in the critically ill child.
-
Frontiers in pediatrics · Jan 2018
ReviewClassification of Pediatric Asthma: From Phenotype Discovery to Clinical Practice.
Advances in big data analytics have created an opportunity for a step change in unraveling mechanisms underlying the development of complex diseases such as asthma, providing valuable insights that drive better diagnostic decision-making in clinical practice, and opening up paths to individualized treatment plans. However, translating findings from data-driven analyses into meaningful insights and actionable solutions requires approaches and tools which move beyond mining and patterning longitudinal data. The purpose of this review is to summarize recent advances in phenotyping of asthma, to discuss key hurdles currently hampering the translation of phenotypic variation into mechanistic insights and clinical setting, and to suggest potential solutions that may address these limitations and accelerate moving discoveries into practice. ⋯ We advocate a more cautious modeling approach by "supervising" the findings to delineate more precisely the characteristics of the individual trajectories assigned to each phenotype. Furthermore, it is important to employ different methods within a study to compare the stability of derived phenotypes, and to assess the immutability of individual assignments to phenotypes. If we are to make a step change toward precision (stratified or personalized) medicine and capitalize on the available big data assets, we have to develop genuine cross-disciplinary collaborations, wherein data scientists who turn data into information using algorithms and machine learning, team up with medical professionals who provide deep insights on specific subjects from a clinical perspective.