Frontiers in cellular and infection microbiology
-
Front Cell Infect Microbiol · Jan 2018
Transcriptome Analysis of Pseudomonas aeruginosa Cultured in Human Burn Wound Exudates.
Pseudomonas aeruginosa is a severe opportunistic pathogen and is one of the major causes of hard to treat burn wound infections. Herein we have used an RNA-seq transcriptomic approach to study the behavior of P. aeruginosa PAO1 growing directly on human burn wound exudate. A chemical analysis of compounds used by this bacterium, coupled with kinetics expression of central genes has allowed us to obtain a global view of P. aeruginosa physiological and metabolic changes occurring while growing on human burn wound exudate. ⋯ The quorum sensing systems, known to be important for the virulence of P. aeruginosa, although moderately induced, were activated even at low cell density. Analysis of bacterial metabolism emphasized importance of lactate, lipid and collagen degradation pathways. Overall, this work allowed to designate, for the first time, a global view of P. aeruginosa characteristics while growing in human burn wound exudate and highlight the possible therapeutic approaches to combat P. aeruginosa burn wound infections.
-
Front Cell Infect Microbiol · Jan 2018
Mycobacterium tuberculosis Virulent Factor ESAT-6 Drives Macrophage Differentiation Toward the Pro-inflammatory M1 Phenotype and Subsequently Switches It to the Anti-inflammatory M2 Phenotype.
Tuberculosis, a human infectious disease caused by Mycobacterium tuberculosis (M.tb), is still a major cause of morbidity and mortality worldwide. The success of M.tb as a pathogen relies mainly on its ability to divert the host innate immune responses. One way by which M.tb maintains a persistent infection in a "silent" granuloma is to inhibit inflammation and induce an immunoregulatory phenotype in host macrophages (MΦs). ⋯ Moreover, gene expression profiling of these cells showed that ESAT-6 induced downregulation of M1 MΦ cell surface molecules CD80 and CD86, transcription factors IRF5 and c-MAF, cytokines IL-12, IL-10, and IL-6, as well as chemokines CXCL10 and CXCL1. Overall, our findings suggest ESAT-6 as being one of the effectors used by M.tb to induce the pro-inflammatory M1 phenotype at the primo-infection; a prerequisite step to promote granuloma formation and subsequently drive the phenotype switch of MΦ polarization from M1 to M2 at a later stage of the infection. Our study improves current knowledge regarding mechanisms of virulence of M.tb and may be helpful to develop novel tools targeting ESAT-6 for a better and more efficient treatment of tuberculosis.
-
Front Cell Infect Microbiol · Jan 2018
Seed Extract of Psoralea corylifolia and Its Constituent Bakuchiol Impairs AHL-Based Quorum Sensing and Biofilm Formation in Food- and Human-Related Pathogens.
The emergence of multi-drug resistance in pathogenic bacteria in clinical settings as well as food-borne infections has become a serious health concern. The problem of drug resistance necessitates the need for alternative novel therapeutic strategies to combat this menace. One such approach is targeting the quorum-sensing (QS) controlled virulence and biofilm formation. ⋯ The molecular docking results suggested that bakuchiol efficiently binds to the active pockets of LasR and RhlR, and the complexes were stabilized by several hydrophobic interactions. Additionally, the molecular dynamics simulation of LasR, LasR-bakuchiol, RhlR, and RhlR-bakuchiol complexes for 50 ns revealed that the binding of bakuchiol to LasR and RhlR was fairly stable. The study highlights the anti-infective potential of the PCMF and bakuchiol instead of bactericidal or bacteriostatic action, as the extract targets QS-controlled virulence and the biofilm.
-
Front Cell Infect Microbiol · Jan 2018
Environmental Surveillance of Zoonotic Francisella tularensis in the Netherlands.
Tularemia is an emerging zoonosis caused by the Gram-negative bacterium Francisella tularensis, which is able to infect a range of animal species and humans. Human infections occur through contact with animals, ingestion of food, insect bites or exposure to aerosols or water, and may lead to serious disease. F. tularensis may persist in aquatic reservoirs. ⋯ This study shows that for tularemia, information regarding the spatial and temporal distribution of its causative agent could be derived from environmental surveillance of surface waters. Tracking a particular strain in the environment as source of infection is feasible and could be substantiated by genotyping, which was achieved in water samples with only low levels of F. tularemia present. These techniques allow the establishment of a link between tularemia cases and environmental samples without the need for cultivation.
-
Front Cell Infect Microbiol · Jan 2018
PvdQ Quorum Quenching Acylase Attenuates Pseudomonas aeruginosa Virulence in a Mouse Model of Pulmonary Infection.
Pseudomonas aeruginosa is the predominant pathogen in pulmonary infections associated with cystic fibrosis. Quorum sensing (QS) systems regulate the production of virulence factors and play an important role in the establishment of successful P. aeruginosa infections. Inhibition of the QS system (termed quorum quenching) renders the bacteria avirulent thus serving as an alternative approach in the development of novel antibiotics. ⋯ We then treated mice with PvdQ during lethal P. aeruginosa pulmonary infection and that resulted in a 5-fold reduction of lung bacterial load and a prolonged survival of the infected animals with the median survival time of 57 hin comparison to 42 h for the PBS-treated group. In a sublethal P. aeruginosa pulmonary infection, PvdQ treatment resulted in less lung inflammation as well as decrease of CXCL2 and TNF-α levels at 24 h post-bacterial-infection by 15 and 20%, respectively. In conclusion, our study has shown therapeutic efficacy of PvdQ acylase as a quorum quenching agent during P. aeruginosa infection.