Tuberculosis
-
Exposure to Mycobacterium tuberculosis (Mtb) may lead to active or latent tuberculosis, or clearance of Mtb, depending essentially on the quality of the host's immune response. This response is initiated through the interaction of Mtb cell wall surface components, mostly glycolipids, with cells of the innate immune system, particularly macrophages (Mφs) and dendritic cells (DCs). The way Mφs and DC alter their cytokine secretome, activate or inhibit different microbicidal mechanisms and present antigens and consequently trigger the T cell-mediated immune response impacts the host immune response against Mtb. ⋯ Understanding the immunomodulatory properties of these cell wall glycolipids, how they differ between distinct Mtb strains, and how they influence the degree of Mtb virulence, is of utmost relevance to understand how the host mounts a protective or otherwise pathologic immune response. This is essential for the design of preventive strategies against tuberculosis. Thus, since clarifying the controversy on this matter is crucial we here review, summarize and discuss reported data from in vitro stimulation with the three major Mtb complex cell wall glycolipids (ManLAM, PIMs and LM) in an attempt to conciliate the conflicting findings.
-
Technological advances in nucleic acid amplification have led to breakthroughs in the early detection of PTB compared to traditional sputum smear tests. The sensitivity and specificity of loop-mediated isothermal amplification (LAMP), simultaneous amplification testing (SAT), and Xpert MTB/RIF for the diagnosis of pulmonary tuberculosis were evaluated. A critical review of previous studies of LAMP, SAT, and Xpert MTB/RIF for the diagnosis of pulmonary tuberculosis that used laboratory culturing as the reference method was carried out together with a meta-analysis. ⋯ LAMP, SAT and Xpert MTB/RIF had comparably high levels of sensitivity and specificity for the diagnosis of tuberculosis. The diagnostic sensitivity and specificity of three methods were similar, with LAMP being highly sensitive for the diagnosis of smear-positive PTB. The cost effectiveness of LAMP and SAT make them particularly suitable tests for diagnosing PTB in developing countries.