Articles: mechanical-ventilation.
-
Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. ⋯ Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MBP so as to minimize VILI will reduce the morbidity and mortality associated with ARDS.
-
Am. J. Respir. Crit. Care Med. · Jun 2017
Meta AnalysisEffort To Breathe With Various Spontaneous Breathing Trial Techniques. A Physiological Meta-analysis.
Spontaneous breathing trials (SBTs) are designed to simulate conditions after extubation, and it is essential to understand the physiologic impact of different methods. ⋯ Pressure support reduces respiratory effort compared with T-piece. Continuous positive airway pressure of 0 cm H2O and T-piece more accurately reflect the physiologic conditions after extubation.
-
Am. J. Respir. Crit. Care Med. · Jun 2017
ReviewFifty Years of Research in ARDS. Setting Positive End-expiratory Pressure in the Acute Respiratory Distress Syndrome.
Positive end-expiratory pressure (PEEP) has been used during mechanical ventilation since the first description of acute respiratory distress syndrome (ARDS). In the subsequent decades, many different strategies for optimally titrating PEEP have been proposed. Higher PEEP can improve arterial oxygenation, reduce tidal lung stress and strain, and promote more homogenous ventilation by preventing alveolar collapse at end expiration. ⋯ Other methods set PEEP based on mechanical parameters, such as the plateau pressure, respiratory system compliance, or transpulmonary pressure. No single method of PEEP titration has been shown to improve clinical outcomes compared with other approaches of setting PEEP. Future trials should focus on identifying individuals who respond to higher PEEP with recruitment and on clinically important outcomes (e.g., mortality).
-
Inhaled medications are the mainstay of therapy for many pediatric pulmonary diseases. Device and delivery technique selection is key to improving lung deposition of inhaled drugs. This paper will review the subject in relationship to several pediatric clinical situations: acute pediatric asthma, transnasal aerosol delivery, delivery through tracheostomies, and delivery during noninvasive and invasive mechanical ventilation. This review will focus on the pediatric age group and will not include neonates.
-
Noninvasive monitoring of oxygenation and ventilation is an essential part of pediatric respiratory care. Carbon dioxide, gas exchange monitoring, transcutaneous monitoring, near-infrared spectroscopy, pulse oximetry, and electrical impedance tomography are examined. ⋯ Less mature technologies (electrical impedance tomography and near-infrared spectroscopy) have been of particular interest, since they offer easy bedside application and potential for improved care of children with respiratory failure and other disorders. This article provides an overview of the principles of operation, a survey of recent and relevant literature, and important technological limitations and future research directions.