Articles: trauma.
-
Journal of neurotrauma · Apr 2014
Attentional control 10 years post childhood traumatic brain injury: the impact of lesion presence, location and severity in adolescence and early adulthood.
The relationship between brain injury and attentional control (AC) long after a childhood traumatic brain injury (TBI) has received limited investigation. The aim of this article was to investigate the impact that lesion presence, location, and severity has on AC in a group of young persons who had sustained a moderate to severe TBI 10 years earlier during childhood. The participants in this study were a subset of a larger 10-year, follow-up assessment comprised of 31 persons in late adolescence and early adulthood (21 males), with a mean age at testing of 15.4 years (standard error 0.6; range 10.7-21.2 years). ⋯ When using standardized testing with subtests of the TEA-ch, no differences in performance between those with and those without a lesion at 10 years post-TBI were found. On standardized behavioral measures such as parental reports of perceived AC (Behavior Rating Inventory of Executive Function), however, the presence of a lesion was found to have a detrimental effect on the ability to self-regulate and monitor behavior in late adolescence and the early stages of adulthood. We discuss these results and propose that there is a network of brain regions associated with AC, and generalized lesions have the greatest influence on such abilities.
-
Journal of neurotrauma · Apr 2014
Evidence for the therapeutic efficacy of either mild hypothermia or oxygen radical scavengers following repetitive mild traumatic brain injury.
Repetitive brain injury, particularly that occurring with sporting-related injuries, has recently garnered increased attention in both the clinical and public settings. In the laboratory, we have demonstrated the adverse axonal and vascular consequences of repetitive brain injury and have demonstrated that moderate hypothermia and/or FK506 exerted protective effects after repetitive mild traumatic brain injury (mTBI) when administered within a specific time frame, suggesting a range of therapeutic modalities to prevent a dramatic exacerbation. In this communication, we revisit the utility of targeted therapeutic intervention to seek the minimal level of hypothermia needed to achieve protection while probing the role of oxygen radicals and their therapeutic targeting. ⋯ Whereas complete impairment of vascular reactivity was observed in group 1 (without intervention), significant preservation of vascular reactivity was found in the other groups. Similarly, whereas remarkable increase in the APP-positive axon was observed in group 1, there were no significant increases in the other groups. Collectively, these findings indicate that even mild hypothermia or the blunting free radical damage, even when performed in a delayed period, is protective in repetitive mTBI.
-
Journal of neurotrauma · Apr 2014
Assessment of an Experimental Rodent Model of Pediatric Mild Traumatic Brain Injury.
Childhood is one the highest risk periods for experiencing a mild traumatic brain injury (mTBI) from sports-related concussions, motor vehicle accidents, and falls. In addition, many children experience lingering symptomology (post-concussion syndrome) from these closed head injuries. Although the negative sequel of mTBI has been described, a clinically reliable animal model of mild pediatric brain injury has not. ⋯ Juvenile rats who experienced a single mTBI displayed significant motor/balance impairments when tested on the beam walking task and in the open field, as well as deficits of executive functioning as measured with the novel context mismatch task and the probe trial of the Morris water task. In addition, both male and female rats showed depression-like behavior in the forced swim task, with male rats also exhibiting decreased anxiety-related behaviors in the elevated plus maze. The results from this study suggest that the modified weight-drop technique induces a clinically relevant behavioral phenotype in juvenile rats, and may provide researchers with a reliable animal model of mTBI/concussion from which clinical therapeutic strategies could be developed.
-
Curr Opin Crit Care · Apr 2014
ReviewIntracranial pressure after the BEST TRIP trial: a call for more monitoring.
Increased intracranial pressure (ICP) is associated with worse outcome after traumatic brain injury (TBI), but whether its management improves the outcome is unclear. In this review, we will examine the implications of the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure (BEST TRIP) trial, evidence for an influence of ICP care on outcome, and a need for greater understanding of the pathophysiology than just ICP through multimodal monitoring (MMM) to enhance the outcome. ⋯ ICP-based monitoring and treatment alone may not be enough to enhance TBI outcome, but ICP and cerebral perfusion pressure therapy remain important in TBI care. Although high-quality evidence for MMM is limited, it should be more widely adapted to better understand the complex pathophysiology after TBI, better target care, and identify new therapeutic opportunities.
-
Trauma is a leading cause of death, with uncontrolled hemorrhage and exsanguination being the primary causes of preventable deaths during the first 24 h following trauma. Death usually occurs quickly, typically within the first 6 h after injury. One out of four patients arriving at the Emergency Department after trauma is already in hemodynamic and hemostatic depletion. ⋯ The awareness of the specific pathophysiology and of the principle drivers underlying the coagulopathy of trauma by the treating physician is paramount. It has been shown that early recognition prompted by appropriate and aggressive management can correct coagulopathy, control bleeding, reduce blood product use, and improve outcome in severely injured patients. This paper summarizes: (i) the current concepts of the pathogenesis of the coagulopathy of trauma, including ATC and IC, (ii) the current strategies available for the early identification of patients at risk for coagulopathy and ongoing life-threatening hemorrhage after trauma, and (iii) the current and updated European guidelines for the management of bleeding and coagulopathy following major trauma.