Articles: signal-transducing-adaptor-proteins.
-
After a major trauma, IL-1β-producing capacity of monocytes is reduced. Generation of IL-1β is important for appropriate immune response after trauma and requires not only synthesis and transcription of inflammasome components but also their activation. Altered IL-1β-processing due to deregulated NLRP inflammasomes assembly is associated with several inflammatory diseases. However, the precise role of NLRP1 inflammasome in monocytes after trauma is unknown. Here, we investigated if NLRP1 inflammasome components are responsible for depressed monocyte function after trauma. We found in ex vivo in vitro assays that LPS-stimulation of CD14(+)-isolated monocytes from healthy volunteers (HV) results in remarkably higher capacity of the IL-1β-release compared to trauma patients (TP). During the 10-day time course, this monocyte depression was highest immediately after admission. Inflammasome activation correlating with this inflammatory response was demonstrated by enhanced protein production of cleaved IL-1β and caspase-1. Furthermore, we found that the gene expression of IL-1β, caspase-1, and ASC was comparable in TP and HV after LPS-stimulation during the 10-day course, while NLRP1 was markedly reduced in TP. We demonstrated that transfected monocytes from TP, which expressed the lacking components, were recovered in their LPS-induced IL-1β-release and that lacking of NLRP1 is responsible for the suppressed monocyte activity after trauma. The restoration of NLRP1 inflammasome suggests new mechanistic target for the recovery of dysbalanced immune reaction after trauma. ⋯ Suppression in monocyte function occurs early after a major trauma or surgery. Reduced gene expression abrogates NLRP1 inflammasome assembly after trauma. Limited availability of inflammasome components may cause reduced host defense. Restoring NLRP1 in immune-suppressed monocytes recovers NLPR1 activity after trauma. Recovered inflammasome activity may improve the immune response to PAMPs/DAMPs.
-
Joubert syndrome is a rare congenital disorder characterized by brain malformation, developmental delay with hypotonia, ocular motor apraxia, and breathing abnormalities. Joubert syndrome is a genetically highly heterogeneous ciliopathy disorder with 23 identified causative genes. The diagnosis is based on brain imaging showing the "molar tooth sign" with cerebellar vermis agenesis. We describe a consanguineous Moroccan family with three affected siblings (18-year-old boy, 13-year-old girl, and 10-year-old boy) showing typical signs of Joubert syndrome, and attempt to identify the underlying genetic defect in this family. ⋯ Combined homozygosity mapping and targeted sequencing allowed the rapid detection of the disease-causing mutation in the AHI1 gene in this family affected with a highly genetically heterogeneous disorder. Carriers of the same truncating mutation (p.Thr304AsnfsX6), originating from Spain and the Netherlands, presented variable clinical characteristics, thereby corroborating the extreme heterogeneity of Joubert syndrome.
-
Yes-associated protein 1 (YAP1) and long noncoding RNA H19 act as potent oncogenes in many human cancers, but little is known about their roles in bladder cancer or their relationship with each other. ⋯ Our results emphasize the importance of YAP1 and H19 in bladder cancer progression and indicate that H19, at least in part, is induced by YAP1 overexpression.
-
Myeloid-lineage cells accomplish a myriad of homeostatic tasks including the recognition of pathogens, regulation of the inflammatory milieu, and mediation of tissue repair and regeneration. The innate immune receptor and its adaptor protein—triggering receptor expressed on myeloid cells 2 (TREM2) and DNAX-activating protein of 12 kDa (DAP12)—possess the ability to modulate critical cellular functions via crosstalk with diverse signaling pathways. ⋯ The leading hypothesis is that microglia, the resident immune cells of the central nervous system, are the major myeloid cells affected by dysregulated TREM2-DAP12 function. Here, we review how impaired signaling by the TREM2-DAP12 pathway leads to altered immune responses in phagocytosis, cytokine production, and microglial proliferation and survival, thus contributing to disease pathogenesis.
-
JNK-interacting protein 3 (JIP3), also known as JNK stress-activated protein kinase-associated protein 1 (JSAP1), is a scaffold protein mainly involved in the regulation of the pro-apoptotic signaling cascade mediated by c-Jun N-terminal kinase (JNK). Overexpression of JIP3 in neurons in vitro has been reported to lead to accelerated activation of JNK and enhanced apoptosis response to cellular stress. However, the occurrence and the functional significance of stress-induced modulations of JIP3 levels in vivo remain elusive. ⋯ We found that JIP3 was markedly increased in TLE patients and a mouse model of epileptic seizures; mice underexpressing JIP3 through lentivirus bearing LV-Letm1-RNAi showed decreased susceptibility, delayed first seizure and decreased seizure duration response to the epileptogenic properties of KA. Subsequently, a decreased activation of JNK following seizure induction was observed in mice underexpressing JIP3, which also exhibited less neuronal apoptosis in the CA3 region of the hippocampus, as assessed three days after KA administration. We also found that mice underexpressing JIP3 exhibited a delayed pentylenetetrazole (PTZ)-induced kindling seizure process.