Articles: traumatic-brain-injuries.
-
Knowledge of relevant anatomy and underlying mechanisms of traumatic injury is essential for understanding the radiologic findings in craniofacial trauma and their clinical importance. Craniofacial anatomy is diverse, and as a result of this anatomic diversity, physicians from numerous different specialties scrutinize similar imaging sets, looking for different pathologic abnormalities within the same anatomic regions. Radiologists familiar with the chief concerns of this anatomically diverse region can help expedite the decision-making process by keeping those concerns in mind when they report their findings. This review provides an overview of situations wherein surgical management may be indicated.
-
Eur J Trauma Emerg Surg · Aug 2014
The role of decompressive craniectomy in children with severe traumatic brain injury.
Severe traumatic brain injury (TBI) remains the leading cause of death in children. The present study analyses the outcome of children after severe TBI treated by decompressive craniectomy (DC) due to elevated intracranial pressure (ICP) in a single centre. ⋯ In children with refractory ICP conditions due to severe TBI, decompressive surgery might lead to a similar favourable outcome compared to children in whom ICP can be controlled only by conservative management. Timing of surgery depends on the neurological deterioration of the patients and a continuous ICP monitoring.
-
MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at the post-transcriptional level. To identify miRs that may regulate neuronal cell death after experimental traumatic brain injury (TBI), we profiled miR expression changes during the first several days after controlled cortical impact (CCI) in mice. miR-23a and miR-27a were rapidly downregulated in the injured cortex in the first hour after TBI. These changes coincided with increased expression of the proapoptotic Bcl-2 family members Noxa, Puma, and Bax. ⋯ Importantly, administration of miR-23a and miR-27a mimics significantly reduced activation of Puma, Noxa, and Bax as well as attenuated markers of caspase-dependent and -independent apoptosis after TBI. Furthermore, miR-23a and miR-27a mimics significantly attenuated cortical lesion volume and neuronal cell loss in the hippocampus after TBI. These findings indicate that post-traumatic decreases in miR-23a and miR-27a contribute to neuronal cell death after TBI by upregulating proapoptotic Bcl-2 family members, thus providing a novel therapeutic target.
-
Brain metabolism is thought to be maintained by neuronal-glial metabolic coupling. Glia take up glutamate from the synaptic cleft for conversion into glutamine, triggering glial glycolysis and lactate production. This lactate is shuttled into neurons and further metabolized. ⋯ Increased (13)C-labeled lactate in all study groups in the absence of ischemia implied activated astrocytic glycolysis and production of lactate with failure of neuronal uptake (i.e. a loss of glial sensing for glutamate). The early increase in extracellular lactate in severe TBI with the injured neurons rendered unable to pick it up probably contributes to a rapid progression toward irreversible injury and pan-necrosis. Hence, a method to detect and scavenge the excess extracellular lactate on site or early following severe TBI may be a potential primary therapeutic measure.
-
Journal of neurotrauma · Jul 2014
Cost-effectiveness analysis (CEA) of an early-initiated, continuous chain of rehabilitation after severe traumatic brain injury.
The aim of this study is to estimate the long-term cost-effectiveness of two different rehabilitation trajectories after severe traumatic brain injury (sTBI). A decision tree model compared hospitalization costs, health effects, and incremental cost-effectiveness ratios (ICER) of a continuous chain versus a broken chain of rehabilitation. The expected costs were estimated by the reimbursement system using diagnosis-related group and based on point estimates of the Disability Rating Scale (DRS); the health effects were measured by means of area under the curve (AUC). ⋯ By replacing the broken chain with the continuous chain, NOK 37.000 could be saved and 4.06 DRS points gained. By means of probabilistic sensitivity analysis, the majority of ICER estimates (67% of the Monte Carlo simulations) indicated that a continuous chain of rehabilitation was less costly and more effective. These findings indicate that the trajectory of continuous rehabilitation represents a dominant strategy in that it reduces costs and improves outcomes after sTBI under reasonable assumptions.