Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Jun 2014
Serum Biomarkers Predict Acute Symptom Burden in Children after Concussion: A Preliminary Study.
Pediatric emergency department (ED) visits for concussion have nearly tripled in the past decade. Despite this, there are limited bedside tools available to objectively diagnose injury and prognosticate recovery. ⋯ Initial GFAP levels were associated with initial and follow-up symptom burden up to 1 month after injury, whereas follow-up GFAP levels did not correlate with symptom burden. These preliminary data suggest that GFAP may offer an objective measure of injury and recovery after pediatric concussion, potentially offering clinicians a new tool in the management of this common injury.
-
Journal of neurotrauma · Jun 2014
Randomized Controlled Trial Multicenter StudyAddressing the challenges of obtaining functional outcomes in traumatic brain injury research: missing data patterns, timing of follow-up, and three prognostic models.
Traumatic brain injury (TBI) is common and debilitating. Randomized trials of interventions for TBI ideally assess effectiveness by using long-term functional neurological outcomes, but such outcomes are difficult to obtain and costly. If there is little change between functional status at hospital discharge versus 6 months, then shorter-term outcomes may be adequate for use in future clinical trials. ⋯ Of 1066 (83%) patients whose GOSE was obtained both at hospital discharge and at 6-months, 71% of patients had the same dichotomized functional status (severe disability/death vs. moderate/no disability) after 6 months as at discharge, 28% had an improved functional status, and 1% had worsened. Performance was excellent (C-statistic between 0.88 and 0.91) for all three prognostic models and calibration adequate for two models (p values, 0.22 and 0.85). Our results suggest that multiple imputation of the standard 6-month GOSE may be reasonable in TBI research when the primary outcome cannot be obtained through other means.
-
Human brain mapping · Jun 2014
Postconcussional disorder and PTSD symptoms of military-related traumatic brain injury associated with compromised neurocircuitry.
Traumatic brain injury (TBI) is a common combat injury, often through explosive blast, and produces heterogeneous brain changes due to various mechanisms of injury. It is unclear whether the vulnerability of white matter differs between blast and impact injury, and the consequences of microstructural changes on neuropsychological function are poorly understood in military TBI patients. Diffusion tensor imaging (DTI) techniques were used to assess the neurocircuitry in 37 U. ⋯ The most prominent white matter microstructural injury for both blast and nonblast patients was in the frontal fibers within the fronto-striatal (corona radiata, internal capsule) and fronto-limbic circuits (fornix, cingulum), the fronto-parieto-occipital association fibers, in brainstem fibers, and in callosal fibers. Subcortical superior-inferiorly oriented tracts were more vulnerable to blast injury than nonblast injury, while direct impact force had more detrimental effects on anterior-posteriorly oriented tracts, which tended to cause heterogeneous left and right hemispheric asymmetries of white matter connectivity. The tractography using diffusion anisotropy deficits revealed the cortico-striatal-thalamic-cerebellar-cortical (CSTCC) networks, where increased post-concussion and PTSD symptoms were associated with low fractional anisotropy in the major nodes of compromised CSTCC neurocircuitry, and the consequences on cognitive function were explored as well.
-
Journal of neurosurgery · Jun 2014
Multicenter StudyPressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
In severe traumatic brain injury, a universal target for cerebral perfusion pressure (CPP) has been abandoned. Attempts to identify a dynamic CPP target based on the patient's cerebrovascular autoregulatory capacity have been promising so far. Bedside monitoring of pressure autoregulatory capacity has become possible by a number of methods, Czosnyka's pressure reactivity index (PRx) being the most frequently used. The PRx is calculated as the moving correlation coefficient between 40 consecutive 5-second averages of intracranial pressure (ICP) and mean arterial blood pressure (MABP) values. Plotting PRx against CPP produces a U-shaped curve in roughly two-thirds of monitoring time, with the bottom of this curve representing a CPP range corresponding with optimal autoregulatory capacity (CPPopt). In retrospective series, keeping CPP close to CPPopt corresponded with better outcomes. Monitoring of PRx requires high-frequency signal processing. The aim of the present study is to investigate how the processing of the information on cerebrovascular pressure reactivity that can be obtained from routine minute-by-minute ICP and MABP data can be enhanced to enable CPPopt recommendations that do not differ from those obtained by the PRx method, show the same associations with outcome, and can be generated in more than two-thirds of monitoring time. ⋯ Minute-by-minute ICP/MABP data contain relevant information for autoregulation monitoring. In this study, the authors' new method based on minute-by-minute data resolution allowed for CPPopt calculation in nearly the entire monitoring time. This will facilitate the use of pressure reactivity monitoring in all ICUs.
-
Traumatic brain injury (TBI) is a significant public health concern. On average, 1.7 million persons sustain a TBI annually, and about 5.3 million Americans are living with a TBI-related disability. As the leading cause of death and disability in persons under 45 years old, there is a need for developing evidence-based interventions to reduce morbidity from this injury. ⋯ The cascade of molecular and cellular changes after TBI involves plasticity in many different neurochemical systems, which represent putative targets for neurotherapeutic interventions. Accordingly, a successful TBI treatment may have to simultaneously attenuate many injury factors. The purpose of this review is to highlight four promising nutritional intervention options that have been identified-omega-3, zinc, vitamin D, and glutamine-and to provide an up-to-date summary regarding their apparent efficacy for affecting TBI.