Articles: traumatic-brain-injuries.
-
Randomized Controlled Trial
Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury.
The aim of this study was to investigate the effects of transplantation with umbilical cord mesenchymal stem cells in patients with sequelae of traumatic brain injury (TBI). The study hypothesis was that umbilical cord mesenchymal stem cell transplantation could safely and effectively improve neurological function in patients with sequelae of traumatic brain injury. Forty patients with sequelae of TBI were randomly assigned to the stem cell treatment group or the control group. ⋯ All in all, the study results confirmed that the umbilical cord mesenchymal stem cell transplantation improved the neurological function and self-care in patients with TBI sequels. Umbilical cord mesenchymal stem cell transplantation may be a potential treatment for patients with sequelae of TBI. Further research, including a multicenter and large sample size prospective randomized clinical trial, will be required to define definitively the role of umbilical cord mesenchymal stem cell transplantation on sequelae of TBI.
-
The velocity of impact between an object and the human head is a critical factor influencing brain injury outcomes but has not been explored in any detail in animal models. Here we provide a comprehensive overview of the interplay between impact velocity and injury severity in a well-established weight-drop impact acceleration (WDIA) model of diffuse brain injury in rodents. ⋯ There were impact velocity-dependent reductions in sensorimotor performance and in cortical depth-related depression of sensory cortex responses; however axonal injury (demonstrated by immunohistochemistry for β-amyloid precursor protein and neurofilament heavy-chain) was discernible only at the highest impact velocity. We conclude that the WDIA model is capable of producing graded axonal injury in a repeatable manner, and as such will prove useful in the study of the biomechanics, pathophysiology and potential treatment of diffuse axonal injury.
-
The abilities of docosahexaenoic acid (DHA) and exercise to counteract cognitive decay after traumatic brain injury (TBI) is getting increasing recognition; however, the possibility that these actions can be complementary remains just as an intriguing possibility. Here we have examined the likelihood that the combination of diet and exercise has the added potential to facilitate functional recovery following TBI. Rats received mild fluid percussion injury (mFPI) or sham injury and then were maintained on a diet high in DHA (1.2% DHA) with or without voluntary exercise for 12days. ⋯ These effects of FPI were optimally counteracted by the combination of DHA and exercise. Our results support the possibility that the complementary action of exercise is exerted on restoring membrane homeostasis after TBI, which is necessary for supporting synaptic plasticity and cognition. It is our contention that strategies that take advantage of the combined applications of diet and exercise may have additional effects to the injured brain.
-
The sex hormone progesterone has been shown to improve outcomes in animal models of a number of neurologic diseases, including traumatic brain injury, ischemia, spinal cord injury, peripheral nerve injury, demyelinating disease, neuromuscular disorders, and seizures. Evidence suggests it exerts its neuroprotective effects through several pathways, including reducing edema, improving neuronal survival, and modulating inflammation and apoptosis. ⋯ We then comment on the breadth of evidence for the use of progesterone in each neurologic disease family. Finally, we provide support for further human studies using progesterone to treat several neurologic diseases.
-
Experimental neurology · Sep 2013
Environmental enrichment promotes robust functional and histological benefits in female rats after controlled cortical impact injury.
Environmental enrichment (EE) consistently induces marked benefits in male rats after traumatic brain injury (TBI), but whether similar efficacy extends to females is not well established. Hence, the aim of this study was to reassess the effect of EE on functional and histological outcome in female rats after brain trauma. Twenty-four normal cycling adult female rats underwent verification of estrous stage prior to controlled cortical impact (CCI) or sham injury and then were assigned to EE or standard (STD) housing. ⋯ EE also provided significant histological protection as confirmed by increased CA(1/3) cell survival and decreased cortical lesion size vs. STD. These data demonstrate that EE confers robust benefits in female rats after CCI injury, which parallels numerous studies in males and lends further credence for EE as a preclinical model of neurorehabilitation.