Articles: traumatic-brain-injuries.
-
J Neurosurg Anesthesiol · Jul 2023
Association of Brain Injury Biomarkers and Circulatory Shock Following Moderate-Severe Traumatic Brain Injury: A TRACK-TBI Study.
Early circulatory shock following traumatic brain injury (TBI) is a multifactorial process; however, the impact of brain injury biomarkers on the risk of shock has not been evaluated. We examined the association between neuronal injury biomarker levels and the development of circulatory shock following moderate-severe TBI. ⋯ Neuronal injury biomarkers may provide the improved mechanistic understanding and possibly early identification of patients at risk for early circulatory shock following moderate-severe TBI.
-
Journal of neurotrauma · Jul 2023
ReviewPrediction Models for Neurocognitive Outcome of Mild Traumatic Brain Injury in Children: a Systematic Review.
Mild traumatic brain injury (mTBI) is highly prevalent in children. Recent literature suggests that children with mTBI are at considerable risk of persisting neurocognitive deficits, threatening post-injury child development. Nevertheless, clinical tools for early identification of children at risk are currently not available. ⋯ The findings indicate that demographic factors, pre-morbid factors as well as acute and subacute clinical factors have relevance for neurocognitive outcome. Based on the available evidence, evaluation of demographic and pre-morbid risk factors in conjunction with a subacute neurocognitive screening may have the best potential to predict neurocognitive outcome in children with mTBI. The findings underline the importance of future research contributing to early identification of children at risk of persisting neurocognitive deficits.
-
Journal of neurotrauma · Jul 2023
ReviewAdvances in Optogenetics Applications for Central Nervous System Injuries.
Injuries to the central nervous system (CNS) often lead to severe neurological dysfunction and even death. However, there are still no effective measures to improve functional recovery following CNS injuries. Optogenetics, an ideal method to modulate neural activity, has shown various advantages in controlling neural circuits, promoting neural remapping, and improving cell survival. ⋯ In this review, we introduce the light-sensitive proteins and light stimulation system that are important components of optogenetic technology in detail and summarize the development trends. In addition, we construct a comprehensive picture of the current application of optogenetics in CNS injuries and highlight recent advances for the treatment and functional recovery of neurological deficits. Finally, we discuss the therapeutic challenges and prospective uses of optogenetics therapy by photostimulation/photoinhibition modalities that would be suitable for clinical applications.
-
Journal of neurotrauma · Jul 2023
Stress Reactivity after Pediatric Traumatic Brain Injury: Relation with Behavioral Adjustment.
Traumatic injury is linked increasingly to alterations in both stress response systems and psychological health. We investigated reactivity of salivary analytes of the hypothalamic-pituitary-adrenal axis (cortisol) and autonomic nervous system (salivary alpha amylase, sAA) during a psychosocial stress procedure in relation to psychological health outcomes. In a prospective cohort design, stress reactivity of children ages 8 to 15 years hospitalized for traumatic brain injury (TBI; n = 74) or extracranial injury (EI; n = 35) was compared with healthy controls (n = 51) 7 months after injury. ⋯ The flattened and/or reversed direction of sAA reactivity with psychological health outcomes after TBI, and to a lesser degree EI, suggests autonomic nervous system dysregulation. Across groups, sAA reactivity interacted with sex on several psychological health outcomes with greater dysregulation in girls than in boys. Our findings highlight altered sAA, but not cortisol reactivity, as a potential mechanism of biological vulnerability associated with poorer adjustment after TBI.
-
Journal of neurotrauma · Jul 2023
Comparative Effectiveness of Mannitol versus Hypertonic Saline in Traumatic Brain Injury patients: a CENTER-TBI study.
Increased intracranial pressure (ICP) is one of the most important modifiable and immediate threats to critically ill patients suffering from traumatic brain injury (TBI). Two hyperosmolar agents (HOAs), mannitol and hypertonic saline (HTS), are routinely used in clinical practice to treat increased ICP. We aimed to assess whether a preference for mannitol, HTS, or their combined use translated into differences in outcome. ⋯ We found between-center variability regarding HOA preference. Moreover, we found that center is a more important driver of the choice of HOA than patient characteristics. However, our study indicates that this variability is an acceptable practice given absence of differences in outcomes associated with a specific HOA.