Articles: traumatic-brain-injuries.
-
Both unfractionated heparin (UH) and low-molecular-weight heparin (LMWH) are routinely used prophylactically after traumatic brain injury (TBI) to prevent deep vein thrombosis (DVT). Their comparative risk for development or worsening of intracranial hemorrhage necessitating cranial decompression is unclear. Furthermore, the absence of a specific antidote for LMWH may lead to UH being used more often for high-risk patients. This study aims to compare the incidence of delayed cranial decompression occurring after initiation of prophylactic UH versus LMWH using the National Trauma Data Bank. ⋯ Despite the absence of a specific antidote, LMWH was associated with lower rates of need for post-DVT-prophylaxis in craniotomy/craniectomy. This finding questions the notion of UH being safer for patients with TBI because it can be readily reversed. Randomized studies are needed to elucidate causality.
-
Traumatic brain injury (TBI) disproportionately affects low- and middle-income countries (LMICs). In these settings, accurate patient prognostication is both difficult and essential for high-quality patient care. With the ultimate goal of enhancing TBI triage in LMICs, we aim to develop the first deep learning model to predict outcomes after TBI and compare its performance with that of less complex algorithms. ⋯ We present the first use of deep learning for TBI prognostication, with an emphasis on LMICs, where there is great need for decision support to allocate limited resources. Optimal algorithm selection depends on the specific clinical setting; deep learning is not a panacea, though it may have a role in these efforts.
-
To detect post-traumatic vasospasm in patients with traumatic brain injury (TBI), we implemented a simplified transcranial Doppler (TCD) surveillance protocol in a neurointensive care setting. In this study, we evaluate the yield of this protocol. ⋯ The implementation of a simplified TCD surveillance protocol in a neurointensive care setting yielded an 18% detection rate of TCD suspected vasospasm. In our cohort of patients with TBI, decompressive craniectomy was associated with increased risk of developing TCD suspected vasospasm.
-
Clinical Trial
Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study.
While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as 'mild', 'moderate' or 'severe' based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights. ⋯ Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care. Trial registration The core study was registered with ClinicalTrials.gov, number NCT02210221 , registered on August 06, 2014, with Resource Identification Portal (RRID: SCR_015582).