Articles: traumatic-brain-injuries.
-
It is generally believed that hypercapnia and hypocapnia will cause secondary injury to patients with craniocerebral diseases, but a small number of studies have shown that they may have potential benefits. We assessed the impact of partial pressure of arterial carbon dioxide (PaCO2) on in-hospital mortality of patients with craniocerebral diseases. The hypothesis of this research was that there is a nonlinear correlation between PaCO2 and in-hospital mortality in patients with craniocerebral diseases and that mortality rate is the lowest when PaCO2 is in a normal range. ⋯ Both hypercapnia and hypocapnia are harmful to most patients with craniocerebral diseases. Keeping the first 24-h PaCO2 in the normal range (35-45 mm Hg) is associated with lower death risk.
-
Journal of neurotrauma · Apr 2022
Oridonin ameliorates traumatic brain injury-induced neurological damage by improving mitochondrial function and antioxidant capacity and suppressing neuroinflammation through the Nrf2 pathway.
Traumatic brain injury (TBI) is a global public health concern, and few effective treatments for its delayed damages are available. Oridonin (Ori) recently has been reported to show a promising neuroprotective efficacy, but its potential therapeutic effect on TBI has not been thoroughly elucidated. The TBI mouse models were established and treated with Ori or vehicle 30 min post-operation and every 24 h since then. ⋯ Our results demonstrated that Ori effectively improved functional impairments and neuropathological changes in animals with TBI. By activating the Nrf2 pathway, it improved mitochondrial function and antioxidant capacity and suppressed the neuroinflammation induced by oxidative stress. The results therefore suggest Ori as a potent candidate for managing neurological damage after TBI.
-
Journal of neurotrauma · Apr 2022
Association between serum calcium level and hemorrhagic progression in patients with traumatic intraparenchymal hemorrhage: Investigating the mediation and interaction effects of coagulopathy.
In this study, we investigate the association of serum calcium with coagulopathy and hemorrhagic progression contusion (HPC) in patients with traumatic intraparenchymal hemorrhage (tIPH), and further explore the interaction and mediation effect between serum calcium and coagulopathy on HPC. We conducted retrospective analyses of patients with tIPH admitted to the First Affiliated Hospital of Wenzhou Medical University between January 2016 to December 2019. The clinical data, coagulation parameters, and serum calcium levels were collected for further analysis. ⋯ Moreover, comparable results were held using corrected calcium, as well. Admission serum calcium level is associated with the HPC for patients with tIPH and this relationship is partially mediated by coagulopathy, but no significant interaction is detected. Further studies are needed to validate the findings and explore its mechanisms.
-
Eur J Trauma Emerg Surg · Apr 2022
Microwave scan and brain biomarkers to rule out intracranial hemorrhage: study protocol of a planned prospective study (MBI01).
The aim of this planned study is to evaluate the ability of a cranial microwave scanner in conjunction with nine brain biomarkers (Aβ40, Aβ42, GFAP, H-FABP, S100B, NF-L, NSE, UCH-L1 and IL-10) to detect and rule out traumatic intracranial hemorrhage in an emergency department setting. Traumatic brain injury is a world-wide topic of interest for researchers and clinicians. It affects 2% of the population per annum and presents challenges for physicians as patients' initial signs and symptoms do not always correlate with the extent of brain injury. The gold standard for diagnosis of intracranial hemorrhage is head computerized tomography (CT) with the drawbacks of high cost and radiation exposure. A fast, secure way of diagnosing without these drawbacks has potential to make care more effective and reduce cost. ⋯ gov identifier: NCT04666766. Registered December 11, 2020.