Articles: traumatic-brain-injuries.
-
We aim to provide a comprehensive review of the current scientific evidence supporting the use of invasive neurostimulation in the treatment of deficits associated with traumatic brain injury (TBI), as well as to identify future directions for research and highlight important questions that remain unaddressed. Neurostimulation is a treatment modality with expanding applications in modern medical practice. Targeted electrical stimulation of specific brain regions has been shown to increase synaptogenesis and enhance structural reorganization of neuronal networks. ⋯ Looking forward, it will be important to identify stimulation targets and paradigms that can maximize improvement over multiple functional domains. It will also be important to corroborate the observed behavioral improvements with histological, electrophysiological, and radiological evidence. Finally, the impact of biological variables such as sex and age on the treatment outcomes needs to be explored.
-
Traumatic brain injury (TBI) is a global health problem, for which there are no approved therapies. Advances in acute clinical care have improved post-TBI survival, yet many patients are left with chronic TBI-related disabilities (i.e. chronic TBI). ⋯ Cell therapies have neuroprotective and neurorestorative effects which are believed to modify the disease. In this article, we review the safety and efficacy of cell therapies in early-phase clinical studies that have shown potential to improve outcomes in acute to chronic phases of TBI.
-
Review Meta Analysis
Pre-hospital tracheal intubation in severe traumatic brain injury: a systematic review and meta-analysis.
Severe traumatic brain injury (TBI) continues to be a leading cause of death, particularly in young adults. Severe TBI contributes to significant socioeconomic burden secondary to the long-term disability, impacting the individual and their family, and wider society. The aim of this study was to determine whether establishing a pre-hospital definitive airway was beneficial to mortality and morbidity when compared with no pre-hospital airway. ⋯ CRD42021234439.
-
This review will highlight the latest research relevant to the clinical care of traumatic brain injury (TBI) patients over the last 2 years while underscoring the implications of these advances in the understanding of diagnosis, treatment, and prognosis of TBI. ⋯ The current characterization of TBI as mild, moderate, or severe fails to capture the complexity of the disease process and helps little with prognostication. Molecular biomarkers and invasive monitoring devices including brain tissue oxygenation and measures of cerebral autoregulation are being utilized more commonly and can help guide therapy. Extracranial complications following TBI are common and include infection, respiratory failure, coagulopathy, hypercoagulability, and paroxysmal sympathetic hyperactivity.
-
The purpose of this study was to conduct a systematic review for understanding the availability and limitations of artificial intelligence (AI) approaches that could automatically identify and quantify computed tomography (CT) findings in traumatic brain injury (TBI). ⋯ We identified several important TBI-related CT findings that can be automatically identified and quantified with AI. A combination of these techniques may provide useful tools to enhance reproducibility of TBI identification and quantification by supporting radiologists and clinicians in their TBI assessments and reducing subjective human factors.