Articles: traumatic-brain-injuries.
-
The COVID-19 pandemic has had widespread consequences on health care systems around the world. It resulted in extensive changes to the referral patterns, management, and rehabilitation of surgical conditions. We aimed to evaluate the effect the COVID-19 pandemic has had on traumatic brain injury (TBI) specifically. ⋯ Implementation of strict infection control measures and COVID-19 screening was commonplace, with some reporting changes to operating room protocols. TBI was more likely to be conservatively managed. Rehabilitation services were restricted, with a greater shift towards telemedicine to provide rehabilitative therapy remotely.
-
Although many patients diagnosed with traumatic brain injury (TBI), particularly mild TBI, recover from their symptoms within a few weeks, a small but meaningful subset experience symptoms that persist for months or years after injury and significantly impact quality of life for the person and their family. Factors associated with an increased likelihood of negative TBI outcomes include not only characteristics of the injury and injury mechanism, but also the person's age, pre-injury status, comorbid conditions, environment, and propensity for resilience. ⋯ We identify the need for increased longitudinal, global, standardized, and validated assessments on incidence, recovery, and treatments, as well as standardized assessments of the influence of genetics, race, ethnicity, sex, and environment on TBI outcomes. By identifying how epidemiological factors contribute to TBI outcomes in different groups of persons and potentially impact differential disease progression, we can guide investigators and clinicians toward more-precise patient diagnosis, along with tailored management, and improve clinical trial designs, data evaluation, and patient selection criteria.
-
Journal of neurotrauma · Dec 2021
ReviewPhenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization.
It is widely appreciated that the spectrum of traumatic brain injury (TBI), mild through severe, contains distinct clinical presentations, variably referred to as subtypes, phenotypes, and/or clinical profiles. As part of the Brain Trauma Blueprint TBI State of the Science, we review the current literature on TBI phenotyping with an emphasis on unsupervised methodological approaches, and describe five phenotypes that appear similar across reports. However, we also find the literature contains divergent analysis strategies, inclusion criteria, findings, and use of terms. ⋯ Together, these facts confound direct synthesis of the findings. To overcome this, we introduce PhenoBench, a freely available code repository for the standardization and evaluation of raw phenotyping data. With this review and toolset, we provide a pathway toward robust, data-driven phenotypes that can capture the heterogeneity of TBI, enabling reproducible insights and targeted care.
-
Journal of neurotrauma · Dec 2021
ReviewA Review of Implementation Concepts and Strategies Surrounding Traumatic Brain Injury Clinical Care Guidelines.
Despite considerable efforts to advance the science surrounding traumatic brain injury (TBI), formal efforts supporting the current and future implementation of scientific findings within clinical practice and healthcare policy are limited. While many and varied guidelines inform the clinical management of TBI across the spectrum, clinicians and healthcare systems are not broadly adopting, implementing, and/or adhering to them. As part of the Brain Trauma Blueprint TBI State of the Science, an expert workgroup was assembled to guide this review article, which describes: (1) possible etiologies of inadequate adoption and implementation; (2) enablers to successful implementation strategies; and (3) strategies to mitigate the barriers to adoption and implementation of future research.
-
Translingual neurostimulation (TLNS) with adjunct physical rehabilitation is used to treat balance and gait deficits in several chronic neurological conditions. The purpose of this review is to summarize and appraise the evidence currently available on the portable TLNS device and to assess its potential clinical application. ⋯ TLNS is a promising treatment modality for various chronic neurological conditions that are often refractory to conventional therapy. However, TLNS technology remains largely investigational as high-quality RCTs are still required to elucidate efficacy, optimal dosages, necessary treatment durations, and treatment durability. Further research to develop an appropriate control group is needed for scientifically valid comparisons of TLNS.