Articles: traumatic-brain-injuries.
-
Meta Analysis
The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity.
Serum biomarkers have gained significant popularity as an adjunctive measure in the evaluation and prognostication of traumatic brain injury (TBI). However, a concise and clinically oriented report of the major markers in function of TBI severity is lacking. This systematic review aims to report current data on the diagnostic and prognostic utility of blood-based biomarkers across the spectrum of TBI. ⋯ This review summarizes existing high-quality evidence that supports the use of severity-specific biomarkers in the diagnostic and prognostic evaluation of TBI. These data can be used as a launching platform for the validation of upcoming clinical studies.
-
Traumatic brain injury (TBI) causes structural and functional damage to the central nervous system including the visual pathway. Defects in the afferent visual pathways affect visual function and in severe cases cause complete visual loss. Visual dysfunction is detectable by structural and functional ophthalmic examinations that are routine in the eye clinic, including examination of the pupillary light reflex and optical coherence tomography (OCT). ⋯ While a assessment using a flashlight is relatively insensitive, automated pupillometry has 95% specificity and 78.1% sensitivity in detecting TBI-related visual and cerebral dysfunction with an area under the curve of 0.69-0.78. OCT may also serve as a noninvasive biomarker of TBI severity, demonstrating changes in the retinal ganglion cell layer and nerve fiber layer throughout the range of TBI severity even in the absence of visual symptoms. This review discusses the impact of TBI on visual structure and function.
-
Emerging evidence suggests that biofluid-based biomarkers have diagnostic and prognostic potential in traumatic brain injuries (TBI). However, owing to the lack of a conceptual framework or comprehensive review, it is difficult to visualize the breadth of materials that might be available. We conducted a systematic scoping review to map and categorize the evidence regarding biofluid-based biochemical markers of TBI. ⋯ However, there was no single definitive biomarker with accurate characteristics. The present categorization would be a road map to investigate the biomarkers of the brain injury cascade separately and detect the most representative biomarker of each category. Also, this comprehensive categorization could provide a guiding framework to design combined panels of multiple biomarkers.
-
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. ⋯ Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
-
Journal of neurotrauma · Sep 2021
ReviewPrognostic Research in Traumatic Brain Injury: Markers, Modeling and Methodological Principles.
Prognostic assessment in traumatic brain injury (TBI) is embedded deeply in clinical care. Considering the limitations of current prognostic indicators, there is increasing interest in understanding the role of new biomarkers, and in finding other prognostic indicators of long-term outcomes following TBI. New prognostic indicators may result in the development of more accurate prediction models that could be useful for both risk stratification and clinical decision making. ⋯ Prognostic model research considers combinations of predictors, with challenges for model specification, estimation, evaluation, validation, and presentation. We highlight modern approaches and opportunities related to missing values, exploration of non-linear effects, and assessing between-study heterogeneity. Prognostic research in TBI can be improved if key methodological principles are adhered to and when research is performed in collaboration among multiple centers to ensure generalizability.