Articles: traumatic-brain-injuries.
-
Curr Pain Headache Rep · Jul 2024
ReviewCan Long-Term Outcomes of Posttraumatic Headache be Predicted?
Headache is one of the most common symptoms of traumatic brain injury, and it is more common in patients with mild, rather than moderate or severe, traumatic brain injury. Posttraumatic headache can be the most persistent symptom of traumatic brain injury. In this article, we review the current understanding of posttraumatic headache, summarize the current knowledge of its pathophysiology and treatment, and review the research regarding predictors of long-term outcomes. ⋯ To date, posttraumatic headache has been treated based on the semiology of the primary headache disorder that it most resembles, but the pathophysiology is likely to be different, and the long-term prognosis differs as well. No models exist to predict long-term outcomes, and few studies have highlighted risk factors for the development of acute and persistent posttraumatic headaches. Further research is needed to elucidate the pathophysiology and identify specific treatments for posttraumatic headache to be able to predict long-term outcomes. In addition, the effect of managing comorbid traumatic brain injury symptoms on posttraumatic headache management should be further studied. Posttraumatic headache can be a persistent symptom of traumatic brain injury, especially mild traumatic brain injury. It has traditionally been treated based on the semiology of the primary headache disorder it most closely resembles, but further research is needed to elucidate the pathophysiology of posttraumatic headache and determine risk factors to better predict long-term outcomes.
-
Traumatic brain injury (TBI) is a highly prevalent and potentially severe medical condition. Challenges regarding TBI management are related to accurate diagnostics, defining its severity, and establishing prompt interventions to affect outcomes. Among the health care components in the TBI handling strategy is intracranial pressure (ICP) monitoring, which is fundamental to therapy decisions. However, ICP monitoring is an Achilles tendon, imposing a significant financial burden on health care systems, particularly in middle and low-income communities. This article arises from the understanding from the authors that there is insufficient scientific evidence about the potential economic impacts from the use of noninvasive technologies in the monitoring of TBI. Based on personal experience, as well as from reading other, clinically focused studies, the thesis is that the use of such technologies could greatly affect the health care system and this article seeks to address this lack of literature, show ways in which such systems could be evaluated, and show estimations of possible results from these investigations. ⋯ TBI prevalence has increased with a disproportionate health care burden in the last decades. Noninvasive monitoring techniques seem to be effective in reducing TBI health care costs, with few limitations, especially the need for more supporting scientific evidence. The undeniable clinical and financial potential of these techniques is compelling to further investigate their role in TBI management, as well as the creation of more comprehensive monitoring models to the understanding of complex phenomena occurring in the injured brain.
-
Journal of neurotrauma · Jul 2024
Posttraumatic Transient Neurologic Dysfunction: A Proposal for Pathophysiology.
Unexplained neurological deterioration is occasionally observed in patients with traumatic brain injuries (TBIs). We aimed to describe the clinical features of post-traumatic transient neurological dysfunction and provide new insight into its pathophysiology. We retrospectively collected data from patients with focal neurological deterioration of unknown origin during hospitalization for acute TBI for 48 consecutive months. ⋯ Transient neurological dysfunction (TND) can occur during the acute phase of TBI. Although TND may last longer than a typical transient ischemic attack or seizure, it eventually resolves regardless of treatment. Based on our observation, we postulate that this is a manifestation of spreading depolarization occurring in the injured brain, which is analogous to migraine aura.
-
Journal of neurotrauma · Jul 2024
Widespread white matter abnormalities in concussed athletes detected by 7T diffusion MRI.
Sports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling. ⋯ In this first 7T DTI and DKI study investigating PPCS, widespread microstructural alterations were observed in the white matter, correlating with CSF markers of axonal injury. More white matter changes were observed using DKI than using DTI. These white matter alterations may indicate persistent pathophysiological processes following concussion in sport.
-
Journal of neurotrauma · Jul 2024
A Pilot Study Investigating the Use of serum GFAP to Monitor Changes in Brain White Matter Integrity after Repetitive Head Hits During a Single Collegiate football game.
Repetitive head hits (RHHs) in sports and military settings are increasingly recognized as a risk factor for adverse neurological outcomes, but they are not currently tracked. Blood-based biomarkers of concussion have recently been shown to increase after nonconcussive RHHs during a single sporting contest, raising the possibility that they could be used in real time to monitor the brain's early response to repeated asymptomatic head hits. To test this hypothesis, we measured GFAP in serum immediately before (T0), immediately after (T1) and 45 min (T2) after a single collegiate football game in 30 athletes. ⋯ These results suggest that GFAP may be a biologically relevant indicator of the brain's early response to RHHs during a single sporting event. Developing tools to measure the neurological response to RHHs on an individual level has the potential to provide insight into the heterogeneity in adverse outcomes after RHH exposure and for developing effective and personalized countermeasures. Owing to the small sample size, these findings should be considered preliminary; validation in a larger, independent cohort is necessary.