Articles: disease.
-
Retinitis pigmentosa, which affects one in 3000 people, causes blindness and has no treatment. Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene cause 20% of all cases. Recent work suggests that RPGR, localised to the photoreceptor connecting cilium, regulates rhodopsin transport to the outer segment through its effect on the turnover of actin. We set out to establish a novel model for RPGR disease to test the hypothesis that RPGR mutations lead to retinal degeneration due to a dysregulation of the actin cytoskeleton. ⋯ Wellcome Trust.
-
Non-typhoidal Salmonella (NTS) causes invasive and frequently fatal disease in African children. Existing strategies to prevent, diagnose, and treat NTS disease are inadequate. An improved understanding of the biology of invasive Salmonella infection will facilitate the development of novel NTS control measures. Despite evidence in mice and man showing a clear role for host genetics in NTS susceptibility, there are no published studies investigating host genetic susceptibility to NTS in African populations. ⋯ Wellcome Trust.
-
Preterm infants are at increased risk of cardiometabolic disease in later life. Extrauterine growth restriction, catch-up growth, altered adiposity, and abnormal hypothalamic-pituitary-adrenal axis activity could be predisposing factors. Altered DNA methylation (5-methylcytosine, 5mC) might be one underlying mechanism. We hypothesised that preterm infants have altered 5mC at the linked differentially methylated region 2 (DMR2) of IGF2 and the H19 imprinting control region (H19 ICR) compared with term infants over the first year of life. ⋯ Chief Scientist Office of the Scottish Government.
-
According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. ⋯ For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes.