Articles: neuropathic-pain.
-
Paclitaxel (PTX) is one of the most commonly used chemotherapeutic agents for various cancer diseases. Despite its advantages, PTX also causes behavioral deficits related to nervous-system dysfunction, such as neuropathic pain, depression, anxiety, and cognitive impairments. The prefrontal cortex (PFC) is one of the areas that is susceptible to adverse effects of chemotherapeutic agents. ⋯ RNA sequencing and in-depth gene expression analysis of the PFC in paired vehicle and PTX-treated mice showed that PTX induced 1755 differentially expressed genes in the PFCs of male and female mice. Quantitative real-time RT-PCR verified that some gene expressions in the medial PFC (mPFC) were related to neurotransmission. In conclusion, this study identified a sex-biased effect of PTX on PFC function and gene expression, which provides a foundation for future studies to explore the precise mechanisms of PTX-induced behavioral deficits.
-
Dorsal root ganglion stimulation (DRGS) has recently emerged as a neuromodulation modality in the treatment of chronic neuropathic pain. The objective of this study was to compare the efficacy of different Burst-DRGS amplitudes in an experimental model of painful diabetic peripheral neuropathy (PDPN). ⋯ Our findings indicate a nonlinear relationship between Burst-DRGS amplitude and behavioral outcome, with an estimated optimal amplitude of 52% MT. Further optimization and analysis of DRGS driven by insights into the underlying mechanisms related to the various stimulation paradigms is warranted.
-
Some individuals recover from the pain of nerve trauma within 12 months or less whereas others experience life-long intractable pain. This transition between reversible pain and the establishment of chronic neuropathic pain is poorly understood. We examined the role of persistent inflammation in the dorsal root ganglia (DRG) in the long-term maintenance of mechanical allodynia; an index of neuropathic pain. ⋯ These data support the hypothesis that the amount of CSF1 immunoreactivity and the persistence of inflammation in ipsilateral DRGs contribute to the difference between transient and persistent mechanical allodynia observed in the CCI and SNI models. We also suggest that feedback loops involving cytokines and neurotransmitters may contribute to increased DRG activity in chronic neuropathic pain. Consequently, targeting persistent CSF1 production and peripheral neuroinflammation may be an effective approach to the management of chronic neuropathic pain.
-
Brachial plexus avulsion (BPA) represents the most devastating nerve injury in the upper extremity and is always considered as a sophisticated problem due to its resistance to most standard pain relief medications or neurosurgical interventions. There is also a lack of understanding on the underlying mechanisms. Our study aimed to investigate whether spinal CCL2-CCR2 signaling contributed to the development of neuropathic pain following BPA via modulating glutamate N-methyl-d-aspartate receptor (NMDAR). ⋯ However, these inhibitors didn't change the spinal NMDAR level in sham rats. CCR2 and NMDAR inhibition efficiently alleviated mechanical allodynia caused by BPA either at early or late phase of neuropathic pain. Collectively, CCL2-CCR2 axis is associated with mechanical pain after BPA by elevating NMDAR signaling.
-
Voltage-gated T-type Ca2+ (CaV3) channels regulate diverse physiological events, including neuronal excitability, and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that calcium/calmodulin-dependent protein kinase II and protein kinases A and C regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and upregulates CaV3.2 channels and cyclin-dependent kinase 5 (Cdk5) in dorsal root ganglia (DRG) and spinal dorsal horn. ⋯ The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of CaV3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.