Articles: neuropathic-pain.
-
Neuropathic pain (NP) is defined as constant disabling pain secondary to a lesion or disease of the somatosensory nervous system. This condition is particularly difficult to treat because it often remains resistant to most treatment strategies. Despite the recent diversification of neurostimulation methods, some patients still suffer from refractory pain syndromes. The central role of the posterior insular cortex (PI) in the modulation of pain signaling and perception has been repeatedly suggested. The objective of this study is to assess whether epidural insular stimulation (IS) could reverse NP behavior. ⋯ These results suggest a significant reversal of NP symptoms after LF-IS and offer additional evidence that IS might be beneficial in the treatment of resistant NP syndromes through endogenous opioid secretion. Relying on our novel epidural IS model, further fine tuning of stimulation parameters might be necessary to achieve optimal therapeutic effects.
-
Scrambler therapy (ST) is a noninvasive method of transcutaneous neuromodulation that has 510(K) clearance from the United States Food and Drug Administration for treating acute pain, postoperative pain, and intractable chronic pain. Since its inception, ST has been used to treat many chronic pain syndromes in a variety of patient populations. We synthesized the available literature for ST to delineate its overall evidence basis. ⋯ ST is regarded as a safe intervention with potential for significant analgesic benefit for neuropathic pain conditions. Although the available evidence is most robust for treating chemotherapy-induced peripheral neuropathy, ST has also been shown to be effective in treating other neuropathic pain syndromes. Evidence for ST use in nociceptive pain conditions is limited but appears promising. The favorable safety profile and increasing evidence basis for ST warrant more extensive recognition and consideration for use in clinical care.
-
Intersectional genetics have yielded tremendous advances in our understanding of molecularly identified subpopulations and circuits within the dorsal horn in neuropathic pain. The authors tested the hypothesis that spinal µ opioid receptor-expressing neurons (Oprm1-expressing neurons) contribute to behavioral hypersensitivity and neuronal sensitization in the spared nerve injury model in mice. ⋯ The authors conclude that nerve injury sensitizes pronociceptive µ opioid receptor-expressing neurons in mouse dorsal horn. Nonopioid strategies to inhibit these interneurons might yield new treatments for neuropathic pain.
-
Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. ⋯ Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.
-
We have previously shown that intradermal injection of high-molecular-weight hyaluronan (500-1200 kDa) produces localized antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the therapeutic effect of topical hyaluronan, when combined with each of 3 transdermal drug delivery enhancers (dimethyl sulfoxide [DMSO], protamine or terpene), in preclinical models of inflammatory and neuropathic pain. Topical application of 500 to 1200 kDa hyaluronan (the molecular weight range used in our previous studies employing intradermal administration), dissolved in 75% DMSO in saline, markedly reduced prostaglandin E 2 (PGE 2 ) hyperalgesia, in male and female rats. ⋯ The topical administration of a combination of hyaluronan with 2 other transdermal drug delivery enhancers, protamine and terpene, also attenuated CIPN hyperalgesia, an effect that was more prolonged than with DMSO vehicle. Repeated administration of topical hyaluronan prolonged the duration of antihyperalgesia. Our results support the use of topical hyaluronan, combined with chemically diverse nontoxic skin penetration enhancers, to induce marked antihyperalgesia in preclinical models of inflammatory and neuropathic pain.