Articles: neuropathic-pain.
-
Chronic pain poses a clinical challenge due to its associated costly disability and treatment needs. Determining how pain transitions from acute to chronic is crucial for effective management. Upregulation of the chemokine C-X-C motif ligand 12 (CXCL12) in nociceptive pathway is associated with chronic pain. Our previous study has reported that elevated plasma CXCL12 mediates intracerebral neuroinflammation and the comorbidity of cognitive impairment in neuropathic pain, but whether it is also involved in the pathogenesis of pathologic pain has not been investigated. ⋯ Our study provides strong evidence that a sustained increase in plasma CXCL12 contributes to neuropathic pain through a positive feedback loop that enhances nociceptor plasticity, and suggests that targeting CXCL12/CXCR4 axis in plasma or nociceptive pathways has potential value in regulating pain chronicity.
-
A well-recognized molecular entity involved in pain-related neuroplasticity is the N-methyl-D-aspartate receptor (NMDAR), which is crucial for developing chronic pain. Likewise, the pannexin 1 (Panx1) channel has been described as necessary for initiating and maintaining neuropathic pain, driving nociceptive signals dependent on spinal NMDAR through several possible mechanisms. Through behavioral, pharmacological, and molecular approaches, our study in male rats has revealed several key findings: (1) neurons located in spinal cord laminae I and II express functional Panx1 channels in both neuropathic and sham rats. ⋯ Notably, while 10Panx successfully alleviates hyperalgesia, it does not alter pSrc expression; and (4) NMDA-stimulated YOPRO-1 uptake in neurons of laminae I-II of spinal cord slices were prevented by the NMDAR antagonist D-AP5, the Src inhibitor PP2 (but not PP3), as well as with the 10Panx and carbenoxolone. Therefore, NMDAR activation in dorsal horn neurons triggers an NMDAR-Src-Panx1 signaling pathway, where Panx1 acts as an enhancing effector in neuropathic pain. This implies that disrupting the NMDAR-Panx1 communication (eg, through Src inhibitors and/or Panx1 blockers) may offer a valuable strategy for managing some forms of chronic pain.
-
Curr Pain Headache Rep · Dec 2024
ReviewAn Update on Emerging Regenerative Medicine Applications: The Use of Extracellular Vesicles and Exosomes for the Management of Chronic Pain.
Chronic pain affects nearly two billion people worldwide, surpassing heart disease, diabetes, and cancer in terms of economic costs. Lower back pain alone is the leading cause of years lived with disability worldwide. Despite limited treatment options, regenerative medicine, particularly extracellular vesicles (EVs) and exosomes, holds early promise for patients who have exhausted other treatment options. EVs, including exosomes, are nano-sized structures released by cells, facilitating cellular communication through bioactive molecule transfer, and offering potential regenerative properties to damaged tissues. Here, we review the potential of EVs and exosomes for the management of chronic pain. ⋯ In osteoarthritis, various exosomes, such as those derived from synovial mesenchymal stem cells, human placental cells, dental pulp stem cells, and bone marrow-derived mesenchymal stem cells (MSCs), demonstrate the ability to reduce inflammation, promote tissue repair, and alleviate pain in animal models. In intervertebral disc disease, Wharton's jelly MSC-derived EVs enhance cell viability and reduce inflammation. In addition, various forms of exosomes have been shown to reduce signs of inflammation in neurons and alleviate pain in neuropathic conditions in animal models. Although clinical applications of EVs and exosomes are still in the early clinical stages, they offer immense potential in the future management of chronic pain conditions. Clinical trials are ongoing to explore their therapeutic potential further, and with more research the potential applicability of EVs and exosomes will be fully understood.
-
Journal of anesthesia · Dec 2024
Pregnancy ameliorates neuropathic pain through suppression of microglia and upregulation of the δ-opioid receptor in the anterior cingulate cortex in late-pregnant mice.
Pregnancy-induced analgesia develops in late pregnancy, but its mechanisms are unclear. The anterior cingulate cortex (ACC) plays a key role in the pathogenesis of neuropathic pain. The authors hypothesized that pregnancy-induced analgesia ameliorates neuropathic pain by suppressing activation of microglia and the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and by upregulating opioid receptors in the ACC in late-pregnant mice. ⋯ Pregnancy-induced analgesia ameliorated neuropathic pain by suppressing activation of microglia and the expression of phosphorylated AMPA receptor subunit GluR1 at Ser831, and by upregulation of the δ-opioid receptor in the ACC in late-pregnant mice.
-
Randomized Controlled Trial Multicenter Study
Long-Term Treatment of Chronic Postamputation Pain With Bioelectric Nerve Block: Twelve-Month Results of the Randomized, Double-Blinded, Cross-Over QUEST Study.
The multicenter, randomized, double-blinded, active-sham controlled trial (high-freQUEncy nerve block for poST amputation pain [QUEST]) was conducted to show the safety and efficacy of a novel, peripherally placed high-frequency nerve block (HFNB) system in treating chronic postamputation pain (PAP) in patients with lower limb amputations. The primary outcomes from QUEST were reported previously. This study presents the long-term, single-cross-over, secondary outcomes of on-demand HFNB treatment for chronic PAP. ⋯ Overall, HFNB delivered directly to the damaged peripheral nerve provided sustained, on-demand relief of acute PAP exacerbations, reduced opioid utilization, and improved QOL for patients with lower limb amputations with chronic PAP.