Articles: neuropathic-pain.
-
Gut dysbiosis, defined as pathogenic alterations in the distribution and abundance of different microbial species, is associated with neuropathic pain in a variety of clinical conditions, but this has not been explored in the context of neuropathy in people with HIV (PWH). We assessed gut microbial diversity and dysbiosis in PWH and people without HIV (PWoH), some of whom reported distal neuropathic pain (DNP). DNP was graded on a standardized, validated severity scale. ⋯ Two candidate pathways for these associations, involving microbial pro-inflammatory components and microbially-produced anti-inflammatory short chain fatty acids, are discussed. Future studies might test interventions to re-establish a healthy gut microbiota and determine if this prevents or improves DNP. PERSPECTIVE: The association of neuropathic pain in people with HIV with reduced gut microbial diversity and dysbiosis raises the possibility that re-establishing a healthy gut microbiota might ameliorate neuropathic pain in HIV by reducing proinflammatory and increasing anti-inflammatory microbial products.
-
This study investigated the antinociceptive effects of co-administration of lithium chloride (LiCl) and vitamin E (Vit E) on chronic constriction injury (CCI)-induced peripheral neuropathy in male Wistar rats. It further explored the anti-inflammatory and neuroprotective properties of LiCl and Vit E, which may be complementary to the antinociceptive effects of the two substances. ⋯ The findings revealed that the synergistic effects of the co-administration of Vit E and LiCl in ameliorating NP are mediated by their anti-inflammatory and antioxidant properties.
-
Multicenter Study Clinical Trial
Comparison of Paresthesia Mapping With Anatomic Placement in Burst Spinal Cord Stimulation: Long-Term Results of the Prospective, Multicenter, Randomized, Double-Blind, Crossover CRISP Study.
Spinal cord stimulation (SCS) is an effective therapy for chronic intractable pain. Conventional SCS involves electrode placement based on intraoperative paresthesia mapping; however, newer paradigms like burst may allow for anatomic placement of leads. Here, for the first time, we report the one-year safety and efficacy of burst SCS delivered using a lead placed with conventional, paresthesia mapping, or anatomic placement approach in subjects with chronic low back pain (CLBP). ⋯ This study demonstrated that equivalent clinical benefits could be achieved with burst SCS using either paresthesia mapping or anatomic landmark-based approaches for lead placement. Nonparesthesia-based approaches, such as anatomic landmark-based lead placement investigated here, have the potential to simplify implantation of SCS and improve current surgical practice.