Articles: human.
-
Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by (1)H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a (1)H NMR spectra acquisition. ⋯ The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA.
-
Review
Static and Dynamic Factors Promoting Resilience following Traumatic Brain Injury: A Brief Review.
Traumatic brain injury (TBI) is the greatest contributing cause of death and disability among children and young adults in the United States. The current paper briefly summarizes contemporary literature on factors that can improve outcomes (i.e., promote resilience) for children and adults following TBI. ⋯ However, many of these factors have not been studied across populations, have been limited to preclinical investigations, have been limited in their scope or follow-up, or have not involved a thorough evaluation of outcomes. Thus, although promising, continued research is vital in the area of factors promoting resilience following TBI in children and adults.
-
The current study aimed at describing the distribution and characteristics of malignancy related deaths in human immunodeficiency virus (HIV) infected patients in 2010 and at comparing them to those obtained in 2000 and 2005. ⋯ Cancer prevention (especially smoking cessation), screening strategies and therapeutic management need to be optimized in HIV-infected patients in order to reduce mortality, particularly in the field of respiratory cancers.
-
Am. J. Respir. Cell Mol. Biol. · Jan 2015
The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/IL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 μm.
Exposure to particulate matter (PM), a major component of air pollution, contributes to increased morbidity and mortality worldwide. Inhaled PM induces innate immune responses by airway epithelial cells that may lead to the exacerbation or de novo development of airway disease. We have previously shown that 10-μm PM (PM10) activates the nucleotide-binding domain, leucine-rich repeat protein (NLRP) 3 inflammasome in human airway epithelial cells. ⋯ Despite these profound innate immune responses in the airway epithelium, the NLRP3 inflammasome/IL-1RI axis is dispensable for PM10-facilitated allergic sensitization. We demonstrate the importance of the lung NLRP3 inflammasome in mediating PM10 exposure-associated innate, but not adaptive, immune responses. Our study highlights a mechanism by which PM10 exposure can contribute to the exacerbation of airway disease, but not PM10-facilitated allergic sensitization.
-
Neutrophil extracellular traps (NETs) are critical for anti-bacterial activity of the innate immune system. We have previously shown that mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA (mtDNA), are released into the circulation after injury. We therefore questioned whether mtDNA is involved in trauma-induced NET formation. ⋯ We conclude that mtDNA is a potent inducer of NETs that activates PMN via TLR9 without NADPH-oxidase involvement. We suggest that decreased NET formation in the elderly regardless of higher mtDNA levels in their plasma may result from decreased levels of TLR9 and/or other molecules, such as neutrophil elastase and myeloperoxidase that are involved in NET generation. Further study of the links between circulating mtDNA and NET formation may elucidate the mechanisms of trauma-related organ failure as well as the greater susceptibility to secondary infection in elderly trauma patients.