Articles: human.
-
Extracorporeal membrane oxygenation (ECMO) is a supportive therapy and its success depends on optimal drug therapy along with other supportive care. Emerging evidence suggests significant interactions between the drug and the device resulting in altered pharmacokinetics (PK) of vital drugs which may be further complicated by the PK changes that occur in the context of critical illness. Such PK alterations are complex and challenging to investigate in critically ill patients on ECMO and necessitate mechanistic research. The aim of this project is to investigate each of circuit, drug and critical illness factors that affect drug PK during ECMO. ⋯ Systematic research that integrates both mechanistic and clinical research is desirable when investigating the complex area of pharmacokinetic alterations during ECMO. The above research approach will provide an advanced mechanistic understanding of PK during ECMO. The clinical study when complete will result in development robust guidelines for prescription of 18 commonly used antibiotic, sedative and analgesic drugs used in ECMO patients. This research may also pave the way for further refinements in circuitry, drug chemistry and drug prescriptions during ECMO.
-
La Clinica terapeutica · Jan 2013
Optimal wrist position for long and short axis ultrasound guided radial artery cannulation.
The radial artery is the most common site for arterial cannulation. Procedures for improving radial artery cannulation have involved direct visualization of the vessel with ultrasonography (US). The aim of this study evaluate the short axis and long axis radial artery measurements at 0º, 45º, 60º wrist joint angle and find out the optimal wrist joint angle for long and short axis US guided radial artery cannulation. ⋯ Angle increment up to 45º might help clinicians for radial artery cannulation in short axis plane whereas this angle increment maneuver decreased the arterial height in long axis which might be a potential disadvantage for cannulation.
-
Front Endocrinol (Lausanne) · Jan 2013
ReviewAfferent neuronal control of type-I gonadotropin releasing hormone neurons in the human.
Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH) synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. ⋯ This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic, and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B (NKB) play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes, and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and NKB systems.
-
Front Neural Circuit · Jan 2013
Comparative StudyThe ontogeny of sleep-wake cycles in zebrafish: a comparison to humans.
Zebrafish (Danio rerio) are used extensively in sleep research; both to further understanding of sleep in general and also as a model of human sleep. To date, sleep studies have been performed in larval and adult zebrafish but no efforts have been made to document the ontogeny of zebrafish sleep-wake cycles. Because sleep differs across phylogeny and ontogeny it is important to validate the use of zebrafish in elucidating the neural substrates of sleep. ⋯ Regardless, the data reveal remarkable similarities in the ontogeny of sleep cycles in zebrafish and humans. Moreover, as seen in other organisms, zebrafish sleep levels are highest early in ontogeny and sleep and wake bouts gradually consolidate to form the adult sleep pattern. Finally, sleep percentage, bout duration, bout number, and sleep fragmentation are shown to allow for meaningful comparisons between zebrafish and human sleep.
-
As a main cellular component within the disc, nucleus pulposus (NP) cells play important roles in disc physiology. However, little is known on the biologic hallmarks of human NP cells. Therefore, the present study aimed to address the features of human NP cells. ⋯ Human degenerative NP consists of primarily viable cells. We present direct and in vivo evidence that both human annulus fibrosus and NP cells have phagocytic potential. Moreover, NP cells with long processes exist in both scoliotic and degenerative NP with lack of glucose as one of the possible underlying mechanisms.