Articles: neuralgia.
-
Pulsed radiofrequency (PRF) on the dorsal root ganglion (DRG) has been applied to alleviate neuropathic pain effectively, yet the mechanisms underlying pain reduction owing to this treatment are not clarified completely. The activated microglia, brain-derived neurotrophic factor (BDNF), phosphatidylinositol 3-kinase (PI3K), and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal cord were demonstrated to be involved in developing neuropathic pain. Also, it has been just known that PRF on DRG inhibits the microglial activation in nerve injury rats. Here, we aim to investigate whether PRF treatment could regulate the levels of BDNF, PI3K, and p-ERK in the spinal cord of rats with spared nerve injury (SNI) via suppressing the spinal microglia activation to ease neuropathic pain. ⋯ Microglial BDNF, PI3K, and p-ERK in the spinal cord are suppressed by the therapy of PRF on DRG to ease SNI-induced neuropathic pain in rats.
-
Braz. J. Med. Biol. Res. · Jan 2019
Small RNA sequencing reveals microRNAs related to neuropathic pain in rats.
The present study aimed to identify microRNAs (miRNAs) that are involved in neuropathic pain and predict their corresponding roles in the pathogenesis and development process of neuropathic pain. The rat model of neuropathic pain caused by spared nerve injury (SNI) was established in Sprague-Dawley male rats, followed by small RNA sequencing of the L3-L6 dorsal root ganglion. Real-time PCR was performed to validate the differently expressed miRNAs. ⋯ Target prediction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses suggested that these differentially expressed miRNAs targeted genes that are related to axon guidance, focal adhesion, and Ras and Wnt signaling pathways. Moreover, miR-1224 agomir significantly alleviated SNI-induced neuropathic pain. The current findings provide new insights into the role of miRNAs in the pathogenesis of neuropathic pain.
-
Reg Anesth Pain Med · Jan 2019
Efficacy of the ketamine metabolite (2R,6R)-hydroxynorketamine in mice models of pain.
Ketamine has been shown to reduce chronic pain; however, the adverse events associated with ketamine makes it challenging for use outside of the perioperative setting. The ketamine metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) has a therapeutic effect in mice models of depression, with minimal side effects. The objective of this study is to determine if (2R,6R)-HNK has efficacy in both acute and chronic mouse pain models. ⋯ This study demonstrates that (2R,6R)-HNK is superior to ketamine in reducing mechanical allodynia in acute and chronic pain models and suggests it may be a new non-opioid drug for future therapeutic studies.
-
Frontiers in neurology · Jan 2019
Intra-Venous Lidocaine to Relieve Neuropathic Pain: A Systematic Review and Meta-Analysis.
Background: The prevalence of neuropathic pain is estimated to be between 7 and 10% in the general population. The efficacy of intravenous (IV) lidocaine has been studied by numerous clinical trials on patients with neuropathic pain. The aim of this systematic review and meta-analysis was to evaluate the efficacy of IV lidocaine compared with a placebo for neuropathic pain and secondly to assess the safety of its administration. ⋯ IV infusions of the drug are associated with an increased risk of side effects compared to a placebo. However, the risk of serious adverse events is negligible. Further, well-designed RCTs evaluating the effects of various dosages and infusion periods of IV lidocaine are required to provide clear guidelines on its clinical use.
-
Methylglyoxal (MGO), an endogenous reactive carbonyl compound, plays a key role in the pathogenesis of diabetic neuropathy. The aim of this study is to investigate the role of MGO in diabetic itch and hypoalgesia, two common symptoms associated with diabetic neuropathy. Methods: Scratching behavior, mechanical itch (alloknesis), and thermal hypoalgesia were quantified after intradermal (i.d.) injection of MGO in naïve mice or in diabetic mice induced by intraperitoneal (i.p.) injection of streptozotocin (STZ). ⋯ Thermal hypoalgesia was induced by intrathecal (i.t.) injection of MGO or in STZ-induced diabetic mice, which was abolished by MGO scavengers, intrathecal injection of TRPA1 blockers, and in Trpa1-/- mice. Conclusion: This study revealed that Nav1.7 and MGO-mediated activation of TRPA1 play key roles in itch and hypoalgesia in a murine model of type 1 diabetes. Thereby, we provide a novel potential therapeutic strategy for the treatment of itch and hypoalgesia induced by diabetic neuropathy.