Articles: neuralgia.
-
Hyperbaric oxygen (HBO) has the potential to relieve neuropathic pain. The purpose of this study was to determine whether the NO-cGMP-PKG signaling pathway is involved in the analgesic effects of early hyperbaric oxygen treatment of neuropathic pain in rats. ⋯ Early HBO therapy could significantly improve symptoms of hyperalgesia of neuropathic pain in rats, possibly via activation of the NO-cGMP-PKG signaling transduction pathway.
-
Case Reports
Fosaprepitant for the Management of Refractory Pain in a Patient with Cancer-Related Dermatomyositis.
Optimal pain management often requires multiple pharmacological interventions with the goal of disrupting the pain-signaling pathway and targeting the underlying pathophysiology. Off label use of nonpain medications may have a role in treating refractory pain syndromes. ⋯ Fosaprepitant is a potentially novel adjuvant therapy for the treatment of refractory inflammatory pain syndromes in palliative care.
-
The P2Y12 receptor expressed in satellite cells of the trigeminal ganglion is thought to contribute to neuropathic pain. The functional interaction between neurons and satellite cells via P2Y12 receptors and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) underlying neuropathic pain in the tongue was evaluated in this study. Expression of P2Y12 receptor was enhanced in pERK1/2-immunoreactive cells encircling trigeminal ganglion neurons after lingual nerve crush. ⋯ Co-administration of 2-MeSADP + MRS2395 to naïve rats did not result in hypersensitivity of the tongue. The relative number of CGRP-immunoreactive neurons increased following this co-administration, but to a lesser degree than observed in 2-MeSADP-administrated naïve rats, and the relative number of neurons encircled by pERK1/2-immunoreactive cells did not change. These results suggest that the interaction between activated satellite cells and CGRP-immunoreactive neurons via P2Y12 receptors contributes to neuropathic pain in the tongue associated with lingual nerve injury.
-
Gabapentin is commonly prescribed for nerve pain but may also cause dizziness, sedation and gait disturbances. Similarly, inhibition of the endogenous cannabinoid enzyme monoacylglycerol lipase (MAGL) has antinociceptive and anti-inflammatory properties but also induces sedation in mice at high doses. To limit these side effects, the present study investigated the analgesic effects of coadministering a MAGL inhibitor with gabapentin. ⋯ These data support the strategy of combining MAGL inhibition with a commonly prescribed analgesic as a therapeutic approach for attenuating neuropathic pain.
-
Cannabis and its psychoactive constituent Δ9-tetrahydrocannabinol (THC) have efficacy against neuropathic pain, however, this is hampered by their side effects. It has been suggested that co-administration with another major constituent cannabidiol (CBD) might enhance the analgesic actions of THC and minimise its deleterious side effects. We examined the basis for this phytocannabinoid interaction in a mouse chronic constriction injury (CCI) model of neuropathic pain. ⋯ Unlike THC, the low dose THC:CBD anti-allodynia was not cannabinoid receptor mediated. These findings demonstrate that CBD synergistically enhances the pain-relieving actions of THC in an animal neuropathic pain model, but has little impact on the THC-induced side effects. This suggests that low dose THC:CBD combination treatment has potential in the treatment of neuropathic pain.