Articles: neuralgia.
-
Dorsal root ganglion (DRG) electrical stimulation (ganglionic field stimulation [GFS]) is effective in relieving clinical pain, but its mechanism is unknown. We therefore developed a rat model for GFS to test analgesic effects in the context of neuropathic pain. GFS was applied with a bipolar electrode at L4, using parameters replicating clinical use (20 Hz, 150-μs pulse width, current at 80% of motor threshold). ⋯ Conditioned place preference showed that GFS was not rewarding in uninjured control animals but was rewarding in animals subjected to TNI, which reveals analgesic efficacy of GFS for spontaneous pain. We conclude that GFS relieves neuropathic pain in rats. This model may provide a platform for identifying mechanisms and novel applications of GFS.
-
To investigate the incidence and risk factors of neuralgia after limb-salvage surgery for pelvic tumors with focus on the reconstruction methods. ⋯ The incidence of post-operative neuralgia was 8.3 % in this study cohort. The LLVBS technique could increase the risk of post-operative neuralgia.
-
We have previously shown using a spinal cord injury (SCI) model that gap junctions contribute to the early spread of astrocyte activation in the lumbar spinal cord and that this astrocyte communication plays critical role in the induction of central neuropathic pain. Sigma-1 receptors (Sig-1Rs) have been implicated in spinal astrocyte activation and the development of peripheral neuropathic pain, yet their contribution to central neuropathic pain remains unknown. Thus, we investigated whether SCI upregulates spinal Sig-1Rs, which in turn increase the expression of the astrocytic gap junction protein, connexin 43 (Cx43) leading to the induction of central neuropathic pain. ⋯ Blockade of Sig-1Rs with BD1047 during the induction phase of pain significantly suppressed the SCI-induced development of mechanical allodynia, astrocyte activation, increased expression of Cx43 in both total and membrane levels, and increased association of Cx43 with Sig-1R. However, SCI did not change the expression of oligodendrocyte (Cx32) or neuronal (Cx36) gap junction proteins. These findings demonstrate that SCI activates astrocyte Sig-1Rs leading to increases in the expression of the gap junction protein, Cx43 and astrocyte activation in the lumbar dorsal horn, and ultimately contribute to the induction of bilateral below-level mechanical allodynia.