Articles: hyperalgesia.
-
Over-expression of spinal protein kinase Cγ(PKCγ) contributes to the induction of persistent bilateral hyperalgesia following inflammatory injury, yet the role of spinal PKCγ in short- and long-lasting pain behavior is poorly understood. ⋯ Formalin, spontaneous pain, mechanical hyperalgesia, protein kinase C gamma, KIG31-1, mice.
-
Secondary mechanical hyperalgesia to punctate mechanical stimuli and light touch (allodynia) are prominent symptoms in neuropathic pain states. In a combined microneurographic and psychophysical study, we investigated the role of mechano-insensitive (silent) nociceptors regarding induction. Electrical thresholds of mechano-sensitive and silent nociceptors were assessed by microneurography with two closely spaced intracutaneous electrodes (i.c.) and a transcutaneous configuration (t.c.) in the foot dorsum. ⋯ Punctate hyperalgesia was evoked at very low stimulation frequencies of 1/20 Hz (7/7 subjects), whereas the induction of an axon reflex flare required stimulation at 1/5 Hz. Electrical stimulation which is sufficient to excite mechano-insensitive C nociceptors can induce secondary mechanical hyperalgesia even at low frequencies supporting a role of such low-level input to clinical pain states. Thus, differential nociceptor class-specific input to the spinal cord adds to the complexity of modulatory mechanisms that determine nociceptive processing in the spinal cord.
-
Sensory disturbances often spread beyond the site of injury in complex regional pain syndrome (CRPS) but whether this applies equally to CRPS I and II, or changes across the course of the disease, is unknown. Establishing this is important, because different symptom profiles in CRPS I and II, or in acute vs chronic CRPS, might infer different pathophysiology and treatment approaches. To explore these questions, sensory disturbances were assessed in the limbs and forehead of 71 patients with CRPS I and 33 patients with CRPS II. ⋯ Some of these hemisensory disturbances strengthened with chronicity of pain. These findings suggest that heightened excitability of nociceptive pathways in CRPS spreads to hemisensory convergence points in the brainstem or higher brain centres, possibly in association with compromised pain controls. The similarity of symptom profiles in chronic CRPS I and II implies shared mechanisms despite different triggers.
-
Advances in pediatric cancer treatment have led to a ten year survival rate greater than 75%. Platinum-based chemotherapies (e.g. cisplatin) induce peripheral sensory neuropathy in adult and pediatric cancer patients. The period from birth through to adulthood represents a period of maturation within nociceptive systems. ⋯ The percentage of IB4+ve, CGRP+ve and NF200+ve DRG neurons was not different between groups at P45. There was an increase in TrkA+ve DRG neurons in the cisplatin group at P45, in addition to increased TrkA, NF200 and vGLUT2 immunoreactivity in the lumbar dorsal horn versus controls. These data highlight the impact pediatric cancer chemotherapy has upon the maturation of pain pathways and later life pain experience.
-
Neuroplasticity in the dorsal horn after peripheral nerve damage contributes critically to the establishment of chronic pain. The neurosecretory protein VGF (nonacronymic) is rapidly and robustly upregulated after nerve injury, and therefore, peptides generated from it are positioned to serve as signals for peripheral damage. The goal of this project was to understand the spinal modulatory effects of the C-terminal VGF-derived peptide TLQP-62 at the cellular level and gain insight into the function of the peptide in the development of neuropathic pain. ⋯ Using multiphoton imaging of submaximal glutamate-induced Ca responses in spinal cord slices, we demonstrate the ability of TLQP-62 to potentiate glutamatergic responses in the dorsal horn. We further demonstrate that the peptide selectively potentiates responses of high-threshold spinal neurons to mechanical stimuli in singe-unit in vivo recordings. These findings are consistent with a function of TLQP-62 in spinal plasticity that may contribute to central sensitization after nerve damage.