Articles: hyperalgesia.
-
Diabetic neuropathy pain (DNP) is a common chronic complication of diabetes characterized by spontaneous pain, hyperalgesia and allodynia. Dexmedetomidine is a selective α2 adrenergic agonist that relieves sympathetic nervous tension and reduces the release of glutamate. Thus, it is possible that dexmedetomidine may relieve DNP as well. ⋯ Glutamate production in caudal lumbar was measured by HPLC. We found that STZ-treated rats had decreased pain threshold, elevated activation of microglia but not astrocytes, increased level of pro-inflammatory cytokines, increased apoptosis and glutamate production compared to control animals, and these effects were ameliorated by dexmedetomidine treatment. Pretreatment of yohimbine abolished almost all of the protective effects of dexmedetomidine except for glutamate production.
-
Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle. ⋯ Furthermore, an increased hyperalgesic response was observed when the selective bradykinin B1 agonist des-Arg9-bradykinin was injected into the previously stimulated muscle. Together, these findings demonstrate that static contraction induced mechanical muscle hyperalgesia in gastrocnemius muscle of rats is modulated through peripheral inflammatory mechanisms that are dependent on neutrophil migration, bradykinin, sympathetic amines and prostanoids. Considering the clinical relevance of muscle pain, we propose the present model of static contraction-induced mechanical muscle hyperalgesia as a useful tool for the study of mechanisms underlying static contraction-induced muscle pain.
-
Curr Opin Anaesthesiol · Aug 2017
ReviewOpioid-induced hyperalgesia in clinical anesthesia practice: what has remained from theoretical concepts and experimental studies?
This article reviews the phenomenon of opioid-induced hyperalgesia (OIH) and its implications for clinical anesthesia. The goal of this review is to give an update on perioperative prevention and treatment strategies, based on findings in preclinical and clinical research. ⋯ Since the immediate postoperative period is not ideal to initiate long-term treatment for OIH, the best strategy is to prevent its occurrence. A multimodal approach, including choice of opioid, dose limitations and addition of nonopioid analgesics, is recommended.
-
J. Pharmacol. Exp. Ther. · Aug 2017
TRV0109101, a G Protein-Biased Agonist of the µ-Opioid Receptor, Does Not Promote Opioid-Induced Mechanical Allodynia following Chronic Administration.
Prescription opioids are a mainstay in the treatment of acute moderate to severe pain. However, chronic use leads to a host of adverse consequences including tolerance and opioid-induced hyperalgesia (OIH), leading to more complex treatment regimens and diminished patient compliance. Patients with OIH paradoxically experience exaggerated nociceptive responses instead of pain reduction after chronic opioid usage. ⋯ In agreement with the β-arrestin knockout mouse studies, chronic administration of TRV0109101, a G protein-biased MOPR ligand and structural analog of oliceridine, did not promote the development of OIMA but did result in drug tolerance. Interestingly, following induction of OIMA by morphine or fentanyl, TRV0109101 was able to rapidly reverse allodynia. These observations establish a role for β-arrestins in the development of OIH, independent of tolerance, and suggest that the use of G protein-biased MOPR ligands, such as oliceridine and TRV0109101, may be an effective therapeutic avenue for managing chronic pain with reduced propensity for opioid-induced hyperalgesia.
-
Facilitated pain mechanisms and impaired pain inhibition are often found in chronic pain patients. This study compared clinical pain profiles, pain sensitivity, as well as pronociceptive and antinociceptive mechanisms in patients with localized low back pain (n = 18), localized neck pain (n = 17), low back and radiating leg pain (n = 18), or neck and radiating arm pain (n = 17). It was hypothesized that patients with radiating pain had facilitated pain mechanisms and impaired pain inhibition compared with localized pain patients. ⋯ Temporal summation of pain was increased in patients with radiating back pain compared with localized back pain (P < .03). Patients with radiating arm pain or localized low back pain demonstrated hyperalgesia to heat and pressure in nonpainful body areas (P < .05), as well as well as a facilitated clinical pain profile compared with patients with localized neck pain (P = .03). Patients with radiating pain patterns demonstrated facilitated temporal summation suggesting differences in the underlying pain mechanisms between patients with localized back pain and radiating pain.