Articles: hyperalgesia.
-
Cysteine protease Cathepsin S (CatS) expressed by spinal microglia has been shown to play a critical role in nerve injury and inflammation-induced chronic pain. However, whether microglial CatS contributes to remifentanil-induced acute hyperalgesia remains unstudied. In the present study, intravenous remifentanil infusion induced a significant increase in the expression of premature and mature form of CatS in the activated microglia in the spinal cord. ⋯ However, increased protein level of premature form of CatS was not affected by PBN. Altogether, our findings demonstrate that neuronal ROS promote maturation of microglial CatS which facilitates activation of NMDA in the spinal dorsal horn. Therefore, such mechanism is involved in neuron-microglia positive feedback and contributes to remifentanil-induced hyperalgesia.
-
Nitric oxide donors are known to produce headache in healthy as well as migraine subjects, and to induce extracephalic cutaneous hypersensitivity in rodents. However, little is known on the effect of nitric oxide donors on cephalic cutaneous sensitivity. Combining behavioral, immunohistochemical, and in vivo electrophysiological approaches, this study investigated the effect of systemic administration of the nitric oxide donor, isosorbide dinitrate (ISDN), on cephalic and extracephalic cutaneous sensitivity and on neuronal activation within the medullary dorsal horn (MDH) in the rat. ⋯ Using in vivo electrophysiological unit recordings, we show that ISDN administration never affected the spontaneous activity of trigeminal wide dynamic range neurons, but, facilitated C-fiber-evoked responses in half the neurons tested. This research demonstrates that a nitric oxide donor, isosorbide dinitrate, induces selectively cephalic hyperalgesia that arises as a consequence of central sensitization in pain pathways that subserve meningeal nociception. This model better mimics the clinical condition and offers another possibility of studying the role of nitric oxide donor in the physiopathology of headache.
-
Amongst the side effects of triptans, a substantial percentage of patients experience injection site pain and tenderness, the underlying mechanism of which is unknown. We found that the dose range from 10fg to 1000ng (intradermal) of sumatriptan induced a complex dose-dependent mechanical hyperalgesia in male rats, with distinct peaks, at 1pg and 10ng, but no hyperalgesia at 1ng. In contrast, in females, there was 1 broad peak. ⋯ While selective 5-HT1D or 5-HT1B, agonists produce robust hyperalgesia in female and male rats, respectively, when co-injected the hyperalgesia induced in both sexes was attenuated. Mechanical hyperalgesia induced by sumatriptan (1pg and 10ng) is dependent on the G-protein αi subunit and protein kinase A (PKA), in IB4-positive and negative nociceptors. Understanding the mechanisms responsible for the complex dose dependence for triptan hyperalgesia may provide useful information for the design of anti-migraine drugs with improved therapeutic profiles.
-
Tactile allodynia, a condition in which innocuous mechanical stimuli are perceived as painful, is a common feature of chronic pain. However, how the brain reorganizes in relation to the emergence of tactile allodynia is still largely unknown. This may stem from the fact that experiments in humans are cross-sectional in nature, whereas animal brain imaging studies typically require anaesthesia rendering the brain incapable of consciously sensing or responding to pain. ⋯ In contrast, nucleus accumbens and prefrontal brain areas displayed abnormal activity to normally innocuous stimuli when such stimuli induced tactile allodynia at 28 days after peripheral nerve injury, which had not been the case at 5 days after injury. Our data indicate that tactile allodynia-related nociceptive inputs are not observable in the primary somatosensory cortex BOLD response. Instead, our data suggest that, in time, tactile allodynia differentially engages neural circuits that regulate the affective and motivational components of pain.
-
J Zhejiang Univ Sci B · Mar 2017
Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion.
To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). ⋯ These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition.