Articles: hyperalgesia.
-
Comparative Study
Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy.
Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. ⋯ Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of painful diabetic neuropathy. Moreover, central and peripheral activation of A1R significantly improved mechanical sensitivity, warranting further investigation into this important antinociceptive pathway as a novel therapeutic option for the treatment of painful diabetic neuropathy.
-
ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist α,β-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the β1- or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. ⋯ Together, these findings suggest that α,β-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain.
-
There is increasing evidence implicating astrocytes in multiple forms of chronic pain, as well as in the specific context of chemotherapy-induced peripheral neuropathy (CIPN). However, it is still unclear what the exact role of astrocytes may be in the context of CIPN. Findings in oxaliplatin and paclitaxel models have displayed altered expression of astrocytic gap junctions and glutamate transporters as means by which astrocytes may contribute to observed behavioral changes. ⋯ These changes were prevented by co-treatment with minocycline. Follow-up Western blotting data showed a shift in connexin 43 from a non-phosphorylated state to a phosphorylated state, indicating increased trafficking of expressed connexin 43 to the cell membrane. These data suggest that increases in behavioral sensitivity to cutaneous stimuli may be tied to persistent synaptic glutamate resulting from increased calcium flow between spinal astrocytes.
-
The association between the clinical use of nitroglycerin (NTG) and migraine suggests NTG as an animal model trigger for migraine. NTG-induced hyperalgesia in rats has been extensively used as a migraine model for pre-clinical research. Pregabalin is an anti-epileptic drug and may play a role in the preventive treatment of migraine; however, the mechanism of this action remains to be clarified. ⋯ Moreover, pregabalin suppressed peripheral CGRP release, c-Fos-immunoreactive neurons and the protein expression of c-Fos in TNC as well. These data suggest that pregabalin could alleviate the NTG-induced hyperalgesia. Further studies are required to determine the mechanisms of action for this effect.
-
Neuritis can cause pain hypersensitivities in the absence of axonal degeneration. Such hypersensitivities are reputed to be maintained by ongoing activity into the spinal cord, which, in the neuritis model, is mainly generated from intact C-fiber neurons. The hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels has been implicated in nerve injury-induced pain hypersensitivities. ⋯ Immunohistochemical examination of the HCN2 channel subtype within the L5 dorsal root ganglia revealed an increase in expression in neuronal cell bodies of all sizes post-neuritis. In conclusion, HCN channels contribute to the development of neuritis-induced heat hypersensitivity and ongoing activity. Drugs that target HCN channels may be beneficial in the treatment of neuropathic pain in patients with nerve inflammation.