Articles: hyperalgesia.
-
Eur Rev Med Pharmacol Sci · Nov 2014
Randomized Controlled TrialAcute high dose-fentanyl exposure produces hyperalgesia and tactile allodynia after coronary artery bypass surgery.
Opioid-induced hyperalgesia is well known complication of acute high dose and chronic opioid therapy. In this study, we evaluated development of opioid-induced hyperalgesia following intraoperative short-term use of µ-opioid agonist fentanyl after coronary artery bypass surgery. ⋯ Our results showed that patients undergoing coronary artery bypass surgery receiving fentanyl anesthesia developed postoperative tactile allodynia and thermal hyperalgesia and this was more prominent in high dose group.
-
High-frequency electrical stimulation (HFS) of the human skin induces an increase in both mechanical and heat pain sensitivity in the surrounding unconditioned skin. The aim of this study was to investigate the effect of HFS on the intensity of perception and brain responses elicited by the selective activation of C fibers. HFS was applied to the ventral forearm of 15 healthy volunteers. ⋯ The P2 wave (808 ± 105 ms) was unaffected by HFS. Our results suggest that HFS enhances the sensitivity to thermal C-fiber input in the area of secondary hyperalgesia. However, there was no significant enhancement of the magnitude of the C-fiber ERPs at T2, suggesting that quickly adapting C fibers do not contribute to this enhancement.
-
Complex regional pain syndrome (CRPS) is a painful, disabling, chronic condition whose etiology remains poorly understood. The recent suggestion that immunological mechanisms may underlie CRPS provides an entirely novel framework in which to study the condition and consider new approaches to treatment. Using a murine fracture/cast model of CRPS, we studied the effects of B-cell depletion using anti-CD20 antibodies or by performing experiments in genetically B-cell-deficient (μMT) mice. ⋯ Additional experiments demonstrated that complement system activation and deposition of membrane attack complexes were partially blocked by anti-CD20+ treatment. Collectively, our results suggest that CD20-positive B cells produce antibodies that ultimately support the CRPS-like changes in the murine fracture/cast model. Therapies directed at reducing B-cell activity may be of use in treating patients with CRPS.
-
The aim of this study was to investigate the predictive value of exercise-induced hypoalgesia (EIH) profile on pain intensity induced by nerve injury in a rat model. EIH was tested by evaluating the percentage of withdrawal responses to a train of 30 mechanical stimuli on the hind paw before and after 180 seconds of exercise on a rotating rod. The rats were grouped into low, medium, and high EIH based on their reduction in the percentage of withdrawal responses before and after exercise. Rats from each group then underwent left sciatic nerve constriction injury. Mechanical allodynia, mechanical hyperalgesia, and heat allodynia were assessed in the affected and contralateral hind paws prior to and 3 and 7 days following the procedure. The low EIH rats demonstrated increased hypersensitivity at baseline and developed significantly more severe heat allodynia, mechanical allodynia, and hyperalgesia 3 and 7 days following the injury compared to the medium and high EIH rats. Moreover, the low EIH rats developed contralateral heat allodynia following the injury. The EIH of habituated and nonhabituated rats was compared to study the role of stress on the hypoalgesic effect. No significant differences were found between the habituated and nonhabituated rats at baseline and 1 and 5 minutes after the exercise. ⋯ EIH profile was found to be predictive of pain severity following nerve injury. It may suggest that selected patients with faulty pain modulation are at risk for developing chronic pain following injury or surgical procedures. EIH may represent a preoperative means to detect this predisposition and enable proactive management.
-
Journal of neurochemistry · Nov 2014
Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats.
Chronic neuropathic pain is a common consequence of spinal cord injury (SCI), develops over time and negatively impacts quality of life, often leading to substance abuse and suicide. Recent evidence has demonstrated that reactive oxygen species (ROS) play a role in contributing to neuropathic pain in SCI animal models. This investigation examines four compounds that reduce ROS and the downstream lipid peroxidation products, apocynin, 4-oxo-tempo, U-83836E, and tirilazad, and tests if these compounds can reduce nocioceptive behaviors in chronic SCI animals. ⋯ Injury or trauma to nervous tissue leads to increased concentrations of ROS in the surviving tissue. Further damage from ROS molecules to dorsal lamina neurons leads to membrane excitability, the physiological correlate of chronic pain. Chronic pain is difficult to treat with current analgesics and this research will provide a novel therapy for this disease.