Articles: hyperalgesia.
-
Changes in the actin cytoskeleton in neurons are associated with synaptic plasticity and may also be involved in mechanisms of nociception. We found that the LIM motif-containing protein kinases (LIMKs), which regulate actin dynamics, promoted the development of inflammatory hyperalgesia (excessive sensitivity to painful stimuli). Pain is sensed by the primary sensory neurons of dorsal root ganglion (DRG). ⋯ Inflammatory stimuli stimulated actin polymerization and enhanced the response of the cation channel TRPV1 (transient receptor potential V1) to capsaicin in DRG neurons, effects that were reversed by the knockdown of LIMK or preventing cofilin phosphorylation. Furthermore, inflammatory stimuli caused the serine phosphorylation of TRPV1, which was abolished by preventing cofilin phosphorylation in DRG neurons. We conclude that LIMK-dependent actin rearrangement in primary sensory neurons, leading to altered TRPV1 sensitivity, is involved in the development of inflammatory hyperalgesia.
-
Chronic pain reflects not only sensitization of the ascending nociceptive pathways, but also changes in descending modulation. The rostral ventromedial medulla (RVM) is a key structure in a well-studied descending pathway, and contains two classes of modulatory neurons, the ON-cells and the OFF-cells. Disinhibition of OFF-cells depresses nociception; increased ON-cell activity facilitates nociception. ⋯ Unexpectedly, rather than decreasing ON-cell activity, NPY increased spontaneous activity of both ON- and OFF-cells without altering noxious-evoked changes in firing. Based on these results, we conclude that the anti-hyperalgesic effects of NPY in the RVM are not explained by selective inhibition of ON-cells, but rather by increased spontaneous activity of OFF-cells. Although ON-cells undoubtedly facilitate nociception and contribute to hypersensitivity, the present results highlight the importance of parallel OFF-cell-mediated descending inhibition in limiting the expression of chronic pain.
-
The (+)-isomer of indeloxazine AS1069562 exerts multiple pharmacological actions including the inhibition of serotonin (5-HT) and norepinephrine reuptake and analgesia in experimental animal pain models. Here, we evaluated the antinociceptive effects of AS1069562 and the antidepressants duloxetine and amitriptyline in mouse models of prostaglandin-induced spinal hypersensitivity. Prostaglandin E2 (PGE2) and F2α (PGF2α) were intrathecally administered to induce spinal hypersensitivity, causing tactile allodynia in mice. ⋯ AS1069562 exhibited affinity for both 5-HT1A and 5-HT3 receptors, and the analgesic effect of AS1069562 on PGF2α-induced allodynia was significantly blocked by the 5-HT1A receptor antagonist (S)-WAY100135 and the 5-HT3 receptor agonist SR57227. Taken together, these results indicate that AS1069562 inhibits both C-fiber- and non-C-fiber-dependent prostaglandin-induced allodynia, while duloxetine inhibits only non-C-fiber-triggered allodynia, and amitriptyline inhibits only C-fiber-triggered allodynia. These broad antinociceptive effects of AS1069562 may be due not only to 5-HT and norepinephrine reuptake inhibition but also to its effects on 5-HT receptors such as 5-HT1A and 5-HT3 receptors.
-
Lateral hypothalamic (LH) stimulation produces antinociception in female rats in acute, nociceptive pain. Whether this effect occurs in neuropathic pain or whether male-female sex differences exist is unknown. We examined the effect of LH stimulation in male and female rats using conditions of nociceptive and neuropathic pain. ⋯ However, nociceptive females responded only to the 500-nmol dose, while nociceptive males responded to all doses (p<0.05). For right PWL, only nociceptive males showed a significant carbachol dose response. These findings are suggestive that LH stimulation produces antinociception in male and female rats in both nociceptive and neuropathic pain, but dose response differences exist based on sex and pain condition.