Articles: hyperalgesia.
-
Artemisia capillaris has widespread traditional and pharmacological applications such as analgesic, anti-inflammatory, anti-pyretic, enhance immunity and anti-tumor activity properties. To evaluate the pharmacological activities of this plant, capillarisin, one of the potent constituent of Artemisia capillaris was studied based on anti-hyperalgesic and anti-allodynic effects with detailed mechanism. It can be assumed that measurement of anti-nociceptive effects of capillarisin is one of the parameter for the evaluation of this herb. Capillarisin has extensive pharmacological properties and has been considered to have promising ant-inflammatory and anti-nociceptive activities. The aim of the current study is to investigate the effect of capillarisin and underlying molecular mechanisms of action in preventing acute and subchronic inflammatory pain. ⋯ The present study indicates that capillarisin possessed promising anti-hyperalgesic and anti-allodynic effects through the inhibition of various inflammatory pain signaling, suggesting that capillarisin constitutes a significant component for the treatment of inflammatory pain.
-
Neuroscience letters · Mar 2014
Discriminative and affective touch in human experimental tactile allodynia.
Recently, several studies have suggested a role for unmyelinated (C-tactile, CT) low-threshold mechanoreceptive afferents in the allodynic condition. In this psychophysical study we explored the integrity of both Aβ and CT afferent processing following application of the heat capsaicin model of tactile allodynia on the left forearm in healthy subjects (n=40). We measured tactile direction discrimination (TDD) to target the integrity of Aβ processing (n=20). ⋯ When comparing touch pleasantness in the allodynic and control zone, there was a significantly larger difference in ratings for CT targeted compared to CT suboptimal stimulation. The results suggest a disturbance in both Aβ-mediated discriminative and CT-mediated affective touch processing in human experimental tactile allodynia. Our findings support the canonical view that tactile allodynia is signaled by Aβ afferents but that CTs seem to contribute by the loss of a pain inhibiting role.
-
J. Neurosci. Methods · Mar 2014
Rotterdam Advanced Multiple Plate: a novel method to measure cold hyperalgesia and allodynia in freely behaving rodents.
To investigate the pathophysiology of temperature hypersensitivity in neuropathic pain rodent models, it is essential to be able to quantify the phenotype as objective as possible. Current temperature sensitivity measuring paradigms are performed during exposure to external factors, i.e. light, sound and smell, which modulate behavior significantly. In addition the present outcome measure for temperature hypersensitivity in rodents is the examination of the hind paw lift upon exposure to a certain temperature, which reflects more a reflex-flexion than an experience of pain. ⋯ The results indicate that the RAMP is able to quantify cold hyperalgesia and allodynia in neuropathic pain rats while resolves some of the problems of conventional temperature sensitivity measuring paradigms in rodents.
-
The present study investigates the analgesic effect of minocycline, a semi-synthetic tetracycline antibiotic, in a rat model of inflammation-induced visceral pain. Inflammation was induced in male rats by intracolonic administration of tri-nitrobenzenesulphonic acid (TNBS). Visceral hyperalgesia was assessed by comparing the viscero-motor response (VMR) to graded colorectal distension (CRD) prior and post 7 days after TNBS treatment. ⋯ Interestingly, minocycline did not exhibit analgesic effect in naïve, non-inflamed rats. The results demonstrate that intrathecal injection of minocycline can effectively attenuate inflammation-induced visceral hyperalgesia. Minocycline might as well act on neuronal targets in the spinal cord of inflamed rats, in addition to the widely reported glial inhibitory action to produce analgesia.
-
We recently indicated that brain-derived neurotrophic factor (BDNF) enhances the excitability of small-diameter trigeminal ganglion (TRG) neurons projecting onto the trigeminal nucleus interpolaris/caudalis (Vi/Vc) transition zone via a paracrine mechanism following masetter muscle (MM) inflammation. The present study investigated whether modulation of voltage-gated potassium (K) channels by BDNF contributes to this hyperexcitability effect. To induce inflammation we injected complete Freund's adjuvant (CFA) into the MM. ⋯ Furthermore, co-administration of K252a, a tyrosine kinase inhibitor, abolished the suppression of IA and IK currents by BDNF. These results suggested that the inhibitory effects of BDNF on IA and IK currents in small-diameter TRG neurons projecting onto the Vi/Vc potentiate neuronal excitability, and in turn, contribute to MM inflammatory hyperalgesia. These findings support the development of voltage-gated K(+) channel openers and tyrosine kinase inhibitors as potential therapeutic agents for the treatment of trigeminal inflammatory hyperalgesia.