Articles: hyperalgesia.
-
Mitogen-activated protein kinases (MAPKs) are important signaling factors in many cellular processes including cell proliferation and survival during development and synaptic plasticity induced by acute nociception in the adult. There is extensive evidence for the involvement of members of the MAPK family, the extracellular signal-regulated kinases 1 and 2 (ERKs 1/2), in the development of acute inflammatory somatic and visceral pain, but their role in the maintenance of chronic pain states is unknown. We have previously shown that ovariectomy of adult mice (OVX) generates a persistent and estrogen-dependent abdominal hyperalgesic state that lasts for several months and is not related to a persistent nociceptive afferent input. ⋯ Administration of slow-release pellets containing 17β-estradiol at week 5 post OVX reversed both the development of the hyperalgesia and the enhanced activation of ERK 1/2, suggesting that this activation, like the hyperalgesic state, was estrogen-dependent. Intrathecal injections of the ERK 1/2 inhibitor U0126 successfully rescued the mice from the abdominal hyperalgesia for up to 24 h after the injection and also reversed the enhanced expression of ERK 1/2. Our study shows, for the first time, activation of ERK 1/2 in the spinal cord matching the time course of an estrogen-dependent chronic hyperalgesic state.
-
Diabetic neuropathic pain (DNP) plays a major role in decreased life quality of type 2 diabetes patients, however, the molecular mechanisms underlying DNP remain unclear. Emerging research implicates the participation of spinal glial cells in some neuropathic pain models. However, it remains unknown whether spinal glial cells are activated under type 2 diabetic conditions and whether they contribute to diabetes-induced neuropathic pain. ⋯ Results showed that spinal activated astrocytes dramatically increased interleukin (IL)-1β expression which may induce N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to enhance pain transmission. Together, these results suggest that spinal activated astrocytes may be a crucial component of mechanical allodynia in type 2 diabetes and "Astrocyte-IL-1β-NMDAR-Neuron" pathway may be the detailed mechanism of astrocyte-induced allodynia. Thus, inhibiting astrocytic activation in the spinal dorsal horn may represent a novel therapeutic strategy for treating DNP.
-
The aim of this study was to obtain evidences of a possible analgesic role for palmitoylethanolamide (PEA) in chronic granulomatous inflammation sustained by mast cell (MC) activation in rats at 96 hours. PEA (200-400-800 μg/mL), locally administered at time 0, reduced in a concentration-dependent manner the expression and release of NGF in comparison with saline-treated controls. ⋯ These results were supported by the evidence that MCs in granuloma were mainly degranulated and closely localized near nerve fibres and PEA significantly reduced MC degranulation and nerves fibre formation. These findings are the first evidence that PEA, by the modulation of MC activation, controls pain perception in an animal model of chronic inflammation, suggesting its potential use for the treatment of all those painful conditions in which MC activation is an initial key step.
-
Neuroinflammation and nitroxidative stress are implicated in the pathophysiology of neuropathic pain. In view of both processes, microglial and astroglial activation in the spinal dorsal horn play a predominant role. The present study investigated the severity of neuropathic pain and the degree of glial activation in an inflammatory- and nitroxidative-prone animal model. ⋯ Taken together, our findings show that exacerbated microglial activation and subsequent inflammatory and nitroxidative processes are associated with the severity of neuropathic pain symptoms.
-
The neuropathic pain syndrome is complex. Current drugs to treat neuropathic pain, including anticonvulsivants and antidepressants, fail in up to 40-50% of the patients, while in the rest of them total alleviation is not normally achieved. Increased research advances in the neurobiology of neuropathic pain have not translated in more successful pharmacological treatments by the moment, but recent progress in the experimental methods available for this purpose could result in significant advances in the short term. ⋯ Following this strategy, neurotrophic factors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been postulated as potential pharmacological targets to treat neuropathic pain. In addition, during the last few years, strong scientific evidences point to novel neurotrophic factors, such as pleiotrophin (PTN), as important factors to limit neuropathic pain development because of their remodeling and angiogenic actions in the injured area. This review focuses on recent research advances identifying new pharmacological targets in the treatment of the cause, not only the symptoms, of neuropathic pain.