Articles: hyperalgesia.
-
Arthritis Res. Ther. · Jan 2011
Intraarticular injection of hyaluronan prevents cartilage erosion, periarticular fibrosis and mechanical allodynia and normalizes stance time in murine knee osteoarthritis.
Intraarticular hyaluronan (HA) is used clinically for symptomatic relief in patients with knee osteoarthritis (OA); however, the mechanism of action is unclear. In this study, we examined the effects of a single injection of HA on joint tissue pathology, mechanical allodynia and gait changes (measured by stride times) in a murine model of OA. ⋯ We conclude that videographic gait analysis is an objective, sensitive and reproducible means of monitoring joint pathology in experimental murine OA, since stance time appears to correlate directly with OA severity. A single injection of HA prevents acute and prolonged gait changes and ameliorates the cartilage erosion and periarticular fibrosis normally seen in this model. We speculate that the capacity of HA to prevent cartilage erosion results from its normalization of joint biomechanics and its inhibitory effects on periarticular cells, which are involved in tissue hyperplasia and fibrosis. This effect of exogenous HA appears to mimic the protective effects of ablation of Adamts5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) on experimental murine OA, and we speculate that a common mechanism is involved.
-
Reg Anesth Pain Med · Jan 2011
Effect of continuous posttraumatic intrathecal nocistatin on the development of mechanical allodynia.
The neuropeptide nocistatin has a variety of effects on nociception and other central nervous system functions. It has shown to exert diverging effects on nociceptive behavior in various experimental pain models depending on the dose administered. The inhibitory effect of spinal nocistatin on the release of glycine and γ-aminobutyric acid is thought to be responsible for pronociceptive effects, whereas the antinociceptive action of nocistatin can be attributed to diminished glycine-dependent N-methyl-D-aspartate receptor activation. So far, nocistatin has only been investigated in experimental models of already established pain and has been injected as a bolus. ⋯ Because nocistatin has well-documented effects on established pathological pain, it is conceivable that its effect on nociception is only effective when spinal circuitry is pathologically altered.
-
Pharmacol. Biochem. Behav. · Jan 2011
Pharmacological interaction between oxcarbazepine and two COX inhibitors in a rat model of inflammatory hyperalgesia.
Oxcarbazepine, ibuprofen and etodolac have efficacy in inflammatory pain. The combination of different drugs activates both central and peripheral pain inhibitory pathways to induce additive or synergistic antinociception, and this interaction may allow lower doses of each drug combined and improve the safety profile, with lower side-effects. This study aimed to examine the effects of oxcarbazepine-ibuprofen and oxcarbazepine-etodolac combinations, in a rat model of inflammatory hyperalgesia, and determine the type of interaction between drugs. ⋯ In contrast, there was an additive interaction with etodolac. Synergistic interaction of oxcarbazepine with ibuprofen and its additive interaction with etodolac provide new information about the combination pain treatment and could be explored further in patients with inflammatory pain. Adverse effect analysis of the combinations is necessary to verify possible clinical use of the mixtures.
-
Clin Exp Obstet Gyn · Jan 2011
Case ReportsSympathetic neural hyperalgesia edema syndrome, a frequent cause of pelvic pain in women, mistaken for Lyme disease with chronic fatigue.
To show that chronic fatigue syndrome can be mistakenly attributed to Lyme disease rather than considering sympathetic neural hyperalgesia edema syndrome. This common disorder of women, frequently, but not always causing pelvic pain, can present simply as chronic fatigue. ⋯ This very treatable disorder of the sympathetic nervous system should be considered in women with an unknown cause of chronic fatigue or if the symptoms persist despite treatment of another potential cause.
-
Inflammation is known to be responsible for the sensitization of peripheral sensory neurons, leading to spontaneous pain and invalidating pain hypersensitivity. Given its role in regulating neuronal excitability, the voltage-gated Nav1.9 channel is a potential target for the treatment of pathological pain, but its implication in inflammatory pain is yet not fully described. In the present study, we examined the role of the Nav1.9 channel in acute, subacute and chronic inflammatory pain using Nav1.9-null mice and Nav1.9 knock-down rats. ⋯ This was correlated with an increase in Nav1.9 immunolabeling in nerve fibers surrounding the inflamed area. No change in Nav1.9 current density could be detected in the soma of retrolabeled DRG neurons innervating inflamed tissues, suggesting that newly produced channels may be non-functional at this level and rather contribute to the observed increase in axonal transport. Our results provide evidence that Nav1.9 plays a crucial role in the generation of heat and mechanical pain hypersensitivity, both in subacute and chronic inflammatory pain models, and bring new elements for the understanding of its regulation in those models.