Articles: hyperalgesia.
-
Clinical Trial
Experimental forearm immobilization in humans induces cold and mechanical hyperalgesia.
Complex regional pain syndrome is a painful condition of unknown etiology. Clinical and experimental observations suggest that limb immobilization may induce symptoms and signs characteristic of complex regional pain syndrome. This study examined the effect of forearm immobilization on regional sensory and autonomic functions in healthy subjects. ⋯ Four weeks of forearm immobilization caused transient changes in skin temperature, mechanosensitivity, and thermosensitivity, without alteration in the sympathetically mediated vascular tone.
-
Mice lacking the serotonin-transporter (5-HTT-/- mice) develop reduced thermal hyperalgesia after nerve injury, concomitant with reduced serotonin (5-HT) levels in nervous tissue. Here we investigated pain behaviour in 5-HTT-/- mice compared to their wild type littermates after hind paw inflammation induced by complete Freund's adjuvant (CFA). We used standard tests for pain behaviour, high performance liquid chromatography for measurement of 5-HT, and immunohistochemistry of hind paw skin tissue and L5 dorsal root ganglia (DRG) to measure local inflammation and nerve injury. ⋯ Accordingly, a higher number of injured DRG neurons was identified by activating transcription factor 3 (ATF3) staining in 5-HTT-/- mice after CFA. We conclude that the phenotype of 5-HTT-/- mice leads to reduced inflammatory pain due to reduced tissue 5-HT levels and to greater peripheral nerve injury after inflammation. Human variants of the 5-HTT genotypes might be part of the factors determining the extent of nerve injury and hyperalgesia in inflammation.
-
Neuroendocrinol Lett · Aug 2008
Effect of selenium compound (selol) on the opioid activity in vincristine induced hyperalgesia.
Effect of organoselenium compound (selol), on antinociceptive action of opioid agonists in vincristine neuropathic pain model was investigated. ⋯ Therefore, concomitant administration of selenium and opioids may be beneficial in terminal neoplastic states.
-
Tibia fracture in rats initiates a cascade of nociceptive, vascular, and bone changes resembling complex regional pain syndrome type I (CRPS I). Previous studies suggest that the pathogenesis of these changes is attributable to an exaggerated regional inflammatory response to injury. We postulated that the pro-inflammatory cytokine tumor necrosis factor alpha (TNF) might mediate the development of CRPS-like changes after fracture. ⋯ After fracture the rats developed hindpaw mechanical allodynia and unweighting, which were reversed by sTNF-R1 treatment. Consistent with the behavioral data, spinal Fos increased after fracture and this effect was inhibited by sTNF-R1 treatment. Collectively, these data suggest that facilitated TNF signaling in the hindlimb is an important mediator of chronic regional nociceptive sensitization after fracture, but does not contribute to the hindlimb warmth, edema, and bone loss observed in this CRPS I model.
-
Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. ⋯ The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats.