Articles: hyperalgesia.
-
Neuropeptide Y (NPY) Y2 receptor (Y2) antagonist BIIE0246 can both inhibit and facilitate nociception. The authors hypothesized that Y2 function depends on inflammation or nerve injury status. ⋯ The authors conclude that Y2 at central terminals of primary afferent neurons provides tonic inhibition of mechanical and cold nociception and itch. This switches to the promotion of mechanical and thermal hyperalgesia in models of acute and chronic postsurgical and neuropathic pain, perhaps due to an increase in the population of Y2 that effectively couples to G-proteins. These results support the development of Y2 antagonists for the treatment of chronic postsurgical and neuropathic pain.
-
Microglia take on an altered morphology during chronic opioid treatment. This morphological change is broadly used to identify the activated microglial state associated with opioid side effects, including tolerance and opioid-induced hyperalgesia (OIH). Microglia display similar morphological responses in the spinal cord after peripheral nerve injury (PNI). ⋯ After PNI, we identify an early proliferative transcriptional event across models that precedes the upregulation of histological markers of microglial activation. However, we found no proliferative transcriptional response associated with opioid-induced microglial activation, consistent with histological data, indicating that the number of microglia remains stable during morphine treatment, whereas their morphological response differs from PNI models. Collectively, these results establish the diversity of pain-associated microglial transcriptomic responses and point towards the targeting of distinct insult-specific microglial responses to treat OIH, PNI, or other central nervous system pathologies.
-
Humans use cannabinoid drugs to alleviate pain. As cannabis and cannabinoids are legalized in the United States for medicinal and recreational use, it has become critical to determine the potential utilities and harms of cannabinoid drugs in individuals living with chronic pain. Here, we tested the effects of repeated ∆9-tetrahydrocannabinol (THC) vapor inhalation on thermal nociception and mechanical sensitivity, in adult male and female Wistar rats using a chronic inflammatory pain model (ie, treated with complete Freund's adjuvant [CFA]). ⋯ These data provide a foundation for future work that will explore the cells and circuits underlying the antihyperalgesic effects of THC vapor inhalation in individuals with chronic inflammatory pain. PERSPECTIVE: Cannabinoids are thought to have potential utility in the treatment of chronic pain, but few animal studies have tested the effects of chronic THC or cannabis in animal models of chronic pain. We tested the effects of repeated THC vapor inhalation on chronic pain-related outcomes in male and female animals.
-
Many medications commonly used to treat neuropathic pain are associated with significant, dose-limiting adverse effects, including sedation, dizziness, and fatigue. These adverse effects are due to the activity of these medications within the central nervous system. The objective of this work was to investigate the interactions between peripherally restricted cannabinoid receptor and mu-opioid receptor (MOR) agonists on ongoing and evoked neuropathic pain behaviors in mouse models. ⋯ Importantly, combination dosing of these agents does not cause any detectable preferential behaviors or motor impairment. However, repeated dosing of these agents is associated with the development of tolerance to these drugs. Collectively, these findings suggest that leveraging synergistic pain inhibition between cannabinoid receptor and MOR agonists in peripheral sensory neurons may be worth examining in patients with neuropathic pain.
-
Pain perception is closely tied to the brain's anticipatory processes, particularly involving the suppression of sensorimotor α-oscillations, which reflect the system's readiness for incoming pain. Higher sensorimotor α-oscillation levels are correlated with lower pain sensitivity. Alpha transcranial alternating current stimulation (α-tACS) can enhance these oscillations, potentially reducing pain perception, with effects that may be sustained and influenced by the certainty of pain expectations. ⋯ In anticipatory brain oscillations, real α-tACS enhanced somatosensory α1-oscillations and increased midfrontal θ-oscillations in conditions of certainty, with θ-oscillation modulation showing sustained effects. Mediation analysis revealed that α-tACS reduced pain reactivity by enhancing somatosensory α1-oscillations but increased pain reactivity through the enhancement of midfrontal θ-oscillations, with the latter effect being more pronounced. These findings suggest that while α-tACS may provide pain relief through somatosensory α-oscillation augmentation, its stronger and longer-lasting impact on midfrontal θ-oscillations could lead to hyperalgesia, particularly in the context of certain pain expectations.