Articles: hyperalgesia.
-
Joint manipulation has long been used for pain relief. However, the underlying mechanisms for manipulation-related pain relief remain largely unexplored. The purpose of the current study was to determine which spinal neurotransmitter receptors mediate manipulation-induced antihyperalgesia. ⋯ NAN-190 also blocked manipulation-induced antihyperalgesia suggesting that effects of methysergide are mediated by 5-HT1A receptor blockade. However, spinal blockade of opioid or GABAA receptors had no effect on manipulation induced-antihyperalgesia. Thus, the antihyperalgesia produced by joint manipulation appears to involve descending inhibitory mechanisms that utilize serotonin and noradrenaline.
-
Cannabinoid receptor agonists inhibit inflammatory hyperalgesia in animal models. Nonselective cannabinoid receptor agonists also produce central nervous system (CNS) side effects. Agonists selective for CB2 cannabinoid receptors, which are not found in the CNS, do not produce the CNS effects typical of nonselective cannabinoid receptor agonists but do inhibit acute nociception. The authors used the CB2 receptor-selective agonist AM1241 to test the hypothesis that selective activation of peripheral CB2 receptors inhibits inflammatory hyperalgesia. ⋯ Local, peripheral CB2 receptor activation inhibits inflammation and inflammatory hyperalgesia. These results suggest that peripheral CB2 receptors may be an appropriate target for eliciting relief of inflammatory pain without the CNS effects of nonselective cannabinoid receptor agonists.
-
J. Pharmacol. Exp. Ther. · Oct 2003
Evidence for an involvement of supraspinal delta- and spinal mu-opioid receptors in the antihyperalgesic effect of chronically administered clomipramine in mononeuropathic rats.
The mechanisms of involvement of the opioidergic system in the antinociceptive effect of antidepressants remain to be elucidated. The present study was designed to determine what type of opioid receptors may be involved at the spinal and supraspinal levels in the antihyperalgesic effect of clomipramine, a tricyclic antidepressant commonly prescribed in the treatment of neuropathic pain. Its antihyperalgesic effect on mechanical hyperalgesia (paw pressure test) in rats induced by chronic constriction injury of the sciatic nerve was assessed after repeated administrations (five injections every half-life, a regimen close to clinical use). ⋯ The effect was inhibited by intrathecal administration of CTOP and intracerebroventricular administration of naltrindole, whereas nor-BNI was ineffective whatever the route of injection. These results demonstrate a differential involvement of opioid receptors according to the level of the central nervous system: delta-receptors at the supraspinal level and mu-receptors at the spinal level. Clomipramine could act via a neuronal pathway in which these two receptors are needed.
-
J. Pharmacol. Exp. Ther. · Oct 2003
Capsaicin-induced hyperalgesia and mu-opioid-induced antihyperalgesia in male and female Fischer 344 rats.
The influence of sex in determining responses to opioid analgesics has been well established in rodents and monkeys in assays of short-lasting, phasic pain. The purpose of this investigation was to use a capsaicin model of tonic pain to evaluate sex differences in hyperalgesia and mu-opioid-induced antihyperalgesia in Fischer 344 (F344) rats. Capsaicin injected into the tail produced a dose-dependent thermal hyperalgesia in males and females, with the dose required to produce a comparable level of hyperalgesia being 3.0-fold higher in males than in females. ⋯ When administered locally, the antihyperalgesic effects of morphine were mediated by peripheral opioid receptors in both males and females, since this effect was not reversed by i.c.v. naloxone methiodide. These data contrast with the finding that mu-opioids are more potent in male rodents in assays of phasic pain, thus suggesting that distinct mechanisms underlie male and female sensitivity to opioid antinociception in phasic and tonic pain models. These findings emphasize the need to test male and female rodents in tonic pain assays that may have greater relevance for human pain conditions.