Articles: hyperalgesia.
-
Comparative Study
Intrathecal substance p-saporin attenuates operant escape from nociceptive thermal stimuli.
Destruction of neurons in the superficial dorsal horn that express substance P receptor (NK-1R) has been reported to block development of behavioral hypersensitivity following peripheral sensitization of nociceptors. Baseline sensitivity was not altered in these rat models that assessed innate reflex responses (i.e. hind-paw withdrawal to thermal or mechanical stimulation). In the present study, we evaluated effects of intrathecal substance P-saporin (SP-sap), a toxin selective for cells expressing NK-1R, on operant escape responses of rats to thermal stimulation. ⋯ Lick/guard responses were enhanced by mustard oil for both SP-sap and control animals. Administration of morphine (1.0 mg/kg, s.c.) before testing decreased escape responding at 47 degrees C for both controls and SP-sap rats. Thus, partial loss of NK-1R-expressing neurons in the superficial dorsal horn attenuated thermal nociceptive sensitivity and prevented secondary hyperalgesia when studied with an operant algesia assay, in contrast to innate reflexes which were less sensitive to modification by intrathecal SP-sap.
-
To date, the exact role of inducible nitric oxide synthase (iNOS) in inflammatory pain remains controversial. In the present study, we combined a pharmacological strategy (using a selective iNOS inhibitor) with a genomic strategy (using mice lacking the iNOS gene) to address the function of iNOS in the central mechanism of carrageenan-induced persistent inflammatory pain. In the wild type mice, intrathecal administration of L-N(6)-(1-iminoethyl)-lysine, a selective iNOS inhibitor, significantly inhibited thermal hyperalgesia in the late phase but not in the early phase of carrageenan inflammation. ⋯ We also found that expression of neuronal NOS but not endothelial NOS in the lumbar enlargement segments was significantly increased in iNOS knockout mice compared with wild type mice at 24 h after carrageenan injection. Our results indicate that neuronal NOS might compensate for the function of iNOS in the late phase of carrageenan-induced inflammatory pain in iNOS knockout mice. This suggests that iNOS may be sufficient, but not essential, for the late phase of the carrageenan-induced thermal hyperalgesia.
-
Comparative Study
Glial cell line-derived neurotrophic factor contributes to delayed inflammatory hyperalgesia in adjuvant rat pain model.
Neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, are members of the structurally related neurotrophin family that play important roles in pain modulation. Although there are also indications for the involvement of glial cell line-derived neurotrophic factor (GDNF), it is unclear whether and how GDNF is involved in inflammatory pain. In the present study, we studied the expression pattern of GDNF in dorsal root ganglia (DRG) and spinal cord, using confocal microscopy. ⋯ To assess the impact of this down-regulation on pain transmission, we used a function-blocking antibody against GDNF delivered intrathecally in the same chronic-pain animal models. Injection of this antibody to GDNF produced no immediate effect, but decreased the delayed, bilateral hyperalgesia induced from a unilateral injection of complete Freund's adjuvant. The effect of this antibody coincided with the down-regulation of GDNF immunoreactivity in response to inflammation, suggesting that GDNF supports biochemical changes that contribute to hyperalgesia.
-
Recently we demonstrated that a single 3-day episode of carrageenan-induced acute cutaneous inflammation can create a chronic state of increased susceptibility to inflammatory hyperalgesia. In this latent "primed" state, although there is no ongoing hyperalgesia, the hyperalgesic response to subsequent challenges with inflammatory agent (prostaglandin E2; PGE2) is greatly enhanced. Furthermore, the PGE2-induced hyperalgesia in primed skin was found to require activity of the epsilon isozyme of protein kinase C (PKCepsilon), a second messenger that is not required for PGE2-induced hyperalgesia in control animals. ⋯ PKCepsilon was found to be essential both for the development of carrageenan-induced hyperalgesic priming, as well as for the maintenance of the primed state. Furthermore, hyperalgesic priming could be induced by an agonist of PKCepsilon (pseudo-receptor octapeptide for activated PKCepsilon) at a dose that itself causes no hyperalgesia. The finding that transient inhibition of PKCepsilon can not only prevent the development of priming, but can also terminate a fully developed state of priming suggests the possibility that selective targeting PKCepsilon might be an effective new strategy in the treatment of chronic inflammatory pain.
-
Partial sciatic nerve ligation in mice caused a marked and persistent decrease in the latency of paw withdrawal from a thermal stimulus only on the ipsilateral side. This thermal hyperalgesia was abolished by repeated intrathecal pretreatment with a specific antibody to brain-derived neurotrophic factor (BDNF), but not neurotrophin-4, just before and after the nerve ligation. These results provide direct evidence that BDNF within the spinal cord may contribute to the development of thermal hyperalgesia caused by nerve injury in mice. ⋯ Furthermore, thermal hyperalgesia induced by nerve ligation was completely suppressed by repeated intrathecal injection of a specific antibody to full-length TrkB and an inhibitor of the protein tyrosine kinase activity for the neurotrophin receptor, K-252a. However, repeated intrathecal injection of a specific antibody to truncated TrkB, which lacks the cytoplasmic protein tyrosine kinase domain, failed to reverse thermal hyperalgesia observed in nerve-ligated mice. These findings suggest the possibility that the binding of BDNF to full-length TrkB and subsequent its activation may play a critical role in the development of neuropathic pain-like thermal hyperalgesia induced by nerve injury in mice.