Articles: phenotype.
-
Comparative Study
Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo.
The importance and therapeutic value of stem cells in lymphangiogenesis are poorly understood. We evaluated the potential of human and murine mesenchymal stem cells (MSCs) to acquire a lymphatic phenotype in vitro and to enhance lymphatic regeneration in vivo. ⋯ MSCs were capable of expressing a lymphatic phenotype when exposed to lymph-inductive media and purified VEGF-C. Migratory activity toward VEGF-C in vitro suggests homing capability in vivo. Restoration of lymphatic drainage after injection of MSCs in a lymphedema model indicates that MSCs play a role in lymphatic regeneration. The potential clinical application of MSC in wound healing and reduction of lymphatic edema warrants further research.
-
Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in comparison to routinely used adult lines. ⋯ These data demonstrate that glioma cell lines derived from paediatric patients show key molecular differences to those from adults, some of which are well known, whilst others may provide novel targets for evaluation in primary tumours. We thus provide the rationale and demonstrate the practicability of using paediatric glioma cell lines for preclinical and mechanistic studies.
-
Classic neurotransmitter phenotypes are generally predetermined and develop as a consequence of target-independent lineage decisions. A unique mode of target-dependent phenotype instruction is the acquisition of the cholinergic phenotype in the peripheral sympathetic nervous system. A body of work suggests that the sweat gland plays an important role to determine the cholinergic phenotype at this target site. ⋯ We employed cholinergic-specific over-expression of the vesicular acetylcholine transporter (VAChT) in transgenic mice to overcome sensitivity limits in the detection of initial cholinergic sweat gland innervation. We found that VAChT immunoreactive nerve terminals were present around the sweat gland anlage already from the earliest postnatal stages on, coincident selectively at this sympathetic target with tyrosine hydroxylase-positive fibers. Our results provide a new mechanistic model for sympathetic neuron-target interaction during development, with initial selection by the target of pioneering nerve terminals expressing a cholinergic phenotype, and subsequent stabilization of this phenotype during development.
-
Arch. Pathol. Lab. Med. · Oct 2008
Comparative StudyCpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels.
CpG island methylator phenotype (CIMP) designates a subset of colorectal cancers featuring concordant hypermethylation of multiple promoter CpG islands. Little is known about the clinical outcome or histologic characteristics of CIMP-positive colorectal cancers defined by recently identified CpG island methylator phenotype panels. ⋯ Whereas the classic panel outperformed in predicting clinical outcome, the new panel was superior in detecting known clinicopathologic features of CIMP but inferior in prognostication power.
-
Heterogeneity in asthma expression is multidimensional, including variability in clinical, physiologic, and pathologic parameters. Classification requires consideration of these disparate domains in a unified model. ⋯ Cluster analysis offers a novel multidimensional approach for identifying asthma phenotypes that exhibit differences in clinical response to treatment algorithms.