Articles: sars-cov-2.
-
Frontiers in pediatrics · Jan 2020
ReviewCoronavirus Disease 2019 (COVID-19) in Neonates and Children From China: A Review.
At the end of 2019, a novel coronavirus began to spread in Wuhan, Hubei Province, China. The confirmed cases increased nationwide rapidly, in part due to the increased population mobility during the Chinese Lunar New Year festival. The World Health Organization (WHO) subsequently named the novel coronavirus pneumonia Coronavirus Disease 2019 (COVID-19) and named the virus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). ⋯ The management and treatment strategies have also been improved, which we believe would be helpful to pediatric series in other countries as well. However, the characteristics of neonatal and childhood infection still have not been evaluated in detail. This review summarizes the current understanding of SARS-CoV-2 infection in neonates and children from January 24 to May 1, as an experience from China.
-
Front Cell Infect Microbiol · Jan 2020
Value of Viral Nucleic Acid in Sputum and Feces and Specific IgM/IgG in Serum for the Diagnosis of Coronavirus Disease 2019.
A new type of coronavirus-induced pneumonia eventually termed "coronavirus disease 2019" (COVID-19) was diagnosed in patients in Wuhan (Hubei Province, China) in December 2019, and soon spread worldwide. To improve the detection rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we analyzed the results of viral nucleic acid and serum-specific antibody tests on clinical samples from 20 patients with SARS-CoV-2 infection diagnosed at the First Affiliated Hospital of Guangzhou Medical University in China. ⋯ We also recommend for the application of serological test to assist in confirming SARS-CoV-2 infection judged by viral nucleic acid test, especially when COVID-19-related symptoms have appeared and the viral nucleic acid test was negative. Our findings are critical for the diagnosis of SARS-CoV-2 infection and for determining deadline of restriction measures to prevent transmission caused by convalescent patients with COVID-19.
-
Mediators of inflammation · Jan 2020
ReviewCOVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps.
Coronavirus disease 2019 (COVID-19) is a virus-induced respiratory disease that may progress to acute respiratory distress syndrome (ARDS) and is triggered by immunopathological mechanisms that cause excessive inflammation and leukocyte dysfunction. Neutrophils play a critical function in the clearance of bacteria with specific mechanisms to combat viruses. ⋯ We discuss how the neutrophil's role could influence COVID-19 symptoms in the interaction between hyperinflammation (overproduction of NETs and cytokines) and the clearance function of neutrophils to eliminate the viral infection. We also propose a more in-depth investigation into the neutrophil response mechanism targeting NETosis in the different phases of COVID-19.
-
New York City (NYC) bore the greatest burden of COVID-19 in the United States early in the pandemic. In this case series, we describe characteristics and outcomes of racially and ethnically diverse patients tested for and hospitalized with COVID-19 in New York City's public hospital system. ⋯ This is the largest and most racially/ethnically diverse case series of patients tested and hospitalized for COVID-19 in New York City to date. Our findings highlight disparities in outcomes that can inform prevention and testing recommendations.
-
Front Cell Dev Biol · Jan 2020
ReviewInsights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System.
The emergence of SARS-CoV-2/human/Wuhan/X1/2019, a virus belonging to the species Severe acute respiratory syndrome-related coronavirus, and the recognition of Coronavirus Disease 2019 (COVID-19) as a pandemic have highly increased the scientific research regarding the pathogenesis of COVID-19. The Renin Angiotensin System (RAS) seems to be involved in COVID-19 natural course, since studies suggest the membrane-bound Angiotensin-converting enzyme 2 (ACE2) works as SARS-CoV-2 cellular receptor. Besides the efforts of the scientific community to understand the virus' molecular interactions with human cells, few studies summarize what has been so far discovered about SARS-CoV-2 signaling mechanisms and its interactions with RAS molecules. ⋯ On the other hand, Ang-(1-7) promotes anti-inflammatory effects through its interactions with the Mas Receptor. These molecules might be possible therapeutic targets for treating COVID-19. Thus, the understanding of SARS-CoV-2 intracellular pathways and interactions with the RAS may clarify COVID-19 physiopathology and open perspectives for new treatments and strategies.