Articles: narcotic-antagonists.
-
To examine the delivery and effect of naloxone for opioid overdose in a tiered-response emergency medical services (EMS) system and to ascertain how much time could be saved if the first arriving emergency medical technicians (EMTs) could have administered intranasal naloxone. ⋯ There is potential for significantly earlier delivery of naloxone to patients in opioid overdose if EMTs could deliver intranasal naloxone. A pilot study training and authorizing EMTs to administer intranasal naloxone in suspected opioid overdose is warranted.
-
A diaryl ether derivative, (6-(4-{[(3-methylbutyl)amino]methyl}phenoxy)nicotinamide, was prepared and investigated for its biochemical properties at cloned opioid receptors and its pharmacological effects on animal feeding. The compound displaced [(3)H]DAMGO binding of human mu-opioid receptor, [(3)H]U-69593 of human kappa-opioid receptor, and [(3)H]DPDPE of human delta-opioid receptor with IC(50) values of 0.5+/-0.2 nM, 1.4+/-0.2 nM, and 71+/-15 nM, respectively. ⋯ Importantly, the anorectic efficacy of the compound was mostly diminished in mice deficient in the mu-opioid receptor. Our results suggest an important role for the mu-opioid receptor subtype in animal feeding regulation and support the development of mu-selective antagonists as potential agents for treating human obesity.
-
Naloxone, a specific opiate antagonist, is widely used during neonatal resuscitation to reverse possible opiate-induced respiratory depression. ⋯ Naloxone is rarely needed to reverse the effects of opiates in newborn infants, and its use can be curtailed by following current resuscitation guidelines without increasing respiratory morbidity.
-
5-HT3 receptors are ligand-gated ion channels that are involved in the modulation of emesis and pain. In this study, we investigated whether the opioid analgesic, morphine, exerts specific effects on human 5-HT3 receptors. Whole-cell patches from HEK-293 cells stably transfected with the human 5-HT3A receptor cDNA were used to determine the effects of morphine on the 5-HT-induced currents using the patch clamp technique. ⋯ The morphine antagonist, naloxone, also inhibited 5-HT-induced currents (e.g., at 3 microM by 17%). The effects of morphine and naloxone were not additive. The potency of morphine and the competitivity of the blocking effect points to a specific mechanism at a receptor site rather than an unspecific membrane effect.