Articles: regulatory-t-lymphocytes.
-
Critical care medicine · Sep 2022
The β1-Adrenergic Receptor Contributes to Sepsis-Induced Immunosuppression Through Modulation of Regulatory T-Cell Inhibitory Function.
Although cardiovascular benefits of β 1 -adrenergic receptor blockade have been described in sepsis, little is known about its impact on the adaptive immune response, specifically CD4 T cells. Herein, we study the effects of β 1 -adrenergic receptor modulation on CD4 T-cell function in a murine model of sepsis. ⋯ β 1 -adrenergic receptor activation enhances regulatory T lymphocyte inhibitory function and thus contributes to sepsis-induced immunosuppression. This can be attenuated by β 1 -adrenergic receptor blockade, suggesting a potential immunoregulatory role for this therapy in the management of sepsis.
-
Randomized Controlled Trial
Expression Profiles of Immune Cells after Propofol or Sevoflurane Anesthesia for Colorectal Cancer Surgery: A Prospective Double-blind Randomized Trial.
The antitumor effects of natural killer cells, helper T cells, and cytotoxic T cells after cancer surgery were reported previously. This study hypothesized that propofol-based anesthesia would have fewer harmful effects on immune cells than volatile anesthetics-based anesthesia during colorectal cancer surgery. ⋯ Propofol-based anesthesia was not superior to sevoflurane-based anesthesia in terms of alleviating suppression of immune cells including natural killer cells and T lymphocytes during colorectal cancer surgery.
-
Severe cases of coronavirus disease 2019 (COVID-19) often experience hyper-inflammatory reactions, acute respiratory distress syndrome (ARDS), blood clotting, and organ damage. The most prominent immunopathology of advanced COVID-19 is cytokine release syndrome, or "cytokine storm" which is attributed to a defect of immune-regulating mechanisms. This study aimed to evaluate the role of regulatory T cells (Tregs) as one of the main cells that maintain immune homeostasis. ⋯ Regulatory T cells can be one of the determinants of disease severity and prognosis in patients with COVID-19 by inhibiting rampant inflammation and preventing cytokine storms.
-
Traumatic injuries, such as burn, are often complicated by ethanol intoxication at the time of injury. This leads to a myriad of complications and post-burn pathologies exacerbated by aberrant immune responses. Recent findings suggest that immune cell dysfunction in the gastrointestinal system is particularly important in deleterious outcomes associated with burn injuries. ⋯ This was accompanied by increased levels of IL-10 and decreased levels of pro-proliferative cytokine IL-2 in cultures containing ethanol + burn Tregs compared with sham Tregs. These findings suggest that Treg populations are increased in intestinal tissues 1 day following ethanol intoxication and burn injury. Tregs isolated from ethanol and burn-injured animals also exhibit a greater suppression of effector T cell proliferation, which may contribute to altered T cell responses following injury.
-
Pulmonary Kaposi sarcoma (pKS) caused by Human herpesvirus 8 (HHV-8) is a devastating form of KS in patients with advanced acquired immunodeficiency syndrome (AIDS) and is associated with increased morbidity and mortality. Blood T cells play a central role in the response of HIV-1 and HHV-8. However, little information is available on T cells in the alveolar space of HIV-1-associated pKS patients. ⋯ BAL T cells showed reduced inflammatory capacities and significantly diminished polyfunctionality compared to blood T cells from patients with pKS. This was not accompanied by increased expression of exhaustion markers, such as TIM-3 and PD-1. More importantly, we found a negative correlation between the production of MIP1-β and TNF-α in T cells in BAL and blood, indicating compartmentalised immune responses to pKS and accentuated chronic HIV-1/HHV-8 pathogenesis via T cells in the lungs of people with pKS.