Articles: pregnanolone.
-
Anaesthetic steroids are established positive allosteric modulators of GABAA receptors, but little is known concerning steroid modulation of strychnine-sensitive glycine receptors, the principal mediators of fast, inhibitory neurotransmission in the brain stem and spinal cord. This study compared the modulatory actions of five anaesthetic pregnane steroids and two non-anaesthetic isomers at human recombinant alpha1 glycine and alpha1beta2gamma2L GABAA receptors. ⋯ The data demonstrate that structure-activity relationships for steroid modulation at glycine and GABAA receptors differ. Comparing the EC50 values reported here with free plasma concentrations during steroid-induced anaesthesia indicates that a selective modulation of GABAA receptor activity is likely to occur in vivo.
-
J. Pharmacol. Exp. Ther. · Feb 2004
Neuroactive steroid interactions with voltage-dependent anion channels: lack of relationship to GABA(A) receptor modulation and anesthesia.
Neuroactive steroids modulate the function of gamma-aminobutyric acid type A (GABA(A)) receptors in brain; this is the presumed basis of their action as anesthetics. In a previous study using the neuroactive steroid analog, (3alpha,5beta)-6-azi-3-hydroxypregnan-20-one (6-AziP), as a photoaffinity-labeling reagent, we showed that voltage-dependent anion channel-1 (VDAC-1) was the predominant protein labeled in brain. Antisera to VDAC-1 were shown to coimmunoprecipitate GABA(A) receptors, suggesting a functional relationship between steroid binding to VDAC-1 and modulation of GABA(A) receptor function. ⋯ Electrophysiological studies also showed that neuroactive steroids modulate GABA(A) receptor function normally in VDAC-2-deficient fibroblasts transfected with alpha(1)beta(2)gamma(2) GABA(A) receptor subunits. Finally, the neuroactive steroid pregnanolone [(3alpha,5beta)-3-hydroxypregnan-20-one] produced anesthesia (loss of righting reflex) in VDAC-1- and VDAC-3-deficient mice, and there was no difference in the recovery time between the VDAC-deficient mice and wild-type controls. These data indicate that neuroactive steroid binding to VDAC-1, -2, or -3 is unlikely to mediate GABA(A) receptor modulation or anesthesia.
-
Comparative Study
Sex differences in the effect of ethanol injection and consumption on brain allopregnanolone levels in C57BL/6 mice.
The pharmacological profile of allopregnanolone, a neuroactive steroid that is a potent positive modulator of gamma-aminobutyric acidA (GABAA) receptors, is similar to that of ethanol. Recent findings indicate that acute injection of ethanol increased endogenous allopregnanolone to pharmacologically relevant concentrations in male rats. However, there are no comparable data in mice, nor has the effect of ethanol drinking on endogenous allopregnanolone levels been investigated. ⋯ The sex differences in the effect of ethanol administration on endogenous allopregnanolone levels suggest that the hormonal milieu may impact ethanol's effect on GABAergic neurosteroids. Importantly, these data are the first to report the effect of ethanol drinking on allopregnanolone levels and indicate that ethanol consumption and ethanol injection can produce physiologically relevant allopregnanolone levels in male mice. These results have important implications for studies investigating the potential role of endogenous allopregnanolone levels in modulating susceptibility to ethanol abuse.
-
Comparative Study
Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex.
We compared the effects of three different doses of allopregnanolone (4, 8 or 16 mg/kg), a metabolite of progesterone, to progesterone (16 mg/kg) in adult rats with controlled cortical impact to the pre-frontal cortex. Injections were given 1 h, 6 h and every day for 5 consecutive days after the injury. ⋯ On that same day the injured rats treated with progesterone showed more weight gain compared with the injured rats treated with the vehicle. These results can be taken to show that progesterone and allopregnanolone have similar neuroprotective effects after traumatic brain injury, but allopregnanolone appears to be more potent than progesterone in facilitating CNS repair.
-
Restor Neurol Neuros · Jan 2004
Comparative StudyAllopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury.
In the current study we investigated whether allopregnanolone, a metabolite of progesterone, could replicate progesterone's beneficial effects in promoting spatial learning ability after bilateral medial prefrontal cortex contusions in rats. Allopregnanolone has been shown to enhance GABA neurotransmission, whereas its isomer epiallopregnanolone does not have this property. Thus, epiallopregnanolone was chosen as a control substance to examine further the role of GABA transmission in post-trauma neuroprotection. ⋯ Based on our findings, we suggest that allopregnanolone may mediate the effects of progesterone in promoting cognitive and morphological recovery from TBI through, among others, its direct or indirect effects on GABA-modulated neurons in the MDN and the NBM.