Articles: closed-circuit-anesthesia.
-
Anesthesia and analgesia · Oct 2016
Clinical Trial Observational StudyThe Feasibility of a Completely Automated Total IV Anesthesia Drug Delivery System for Cardiac Surgery.
In this pilot study, we tested a novel automatic anesthesia system for closed-loop administration of IV anesthesia drugs for cardiac surgical procedures with cardiopulmonary bypass. This anesthesia drug delivery robot integrates all 3 components of general anesthesia: hypnosis, analgesia, and muscle relaxation. ⋯ The completely automated closed-loop system tested in this investigation could be used successfully and safely for cardiac surgery necessitating cardiopulmonary bypass. The results of the present trial showed satisfactory clinical performance of anesthesia control.
-
J Clin Monit Comput · Oct 2016
Accuracy of inhaled agent usage displays of automated target control anesthesia machines.
Automated low flow anesthesia machines report how much inhaled anesthetic agent has been used for each anesthetic. We compared these reported values with the amount of agent that had disappeared by weighing the vaporizer/injectors before and after each anesthetic. The vaporizers/injectors of the Aisys, Zeus and FLOW-i were weighed with a high precision weighing scale before and after anesthesia with either desflurane in O2/air or sevoflurane in O2/N2O. ⋯ The differences may be due to either measurement error or cumulative agent display error. The current results can help the researchers decide whether the displayed amounts are accurate enough for their study purposes. The extent to which these discrepancies differ between different units of the same machine remains unstudied.
-
The FLOW-i anesthesia machine (Maquet, Solna, Sweden) can be equipped with automated gas control (AGC), an automated low flow tool with target control of the inspired oxygen concentration (FIO2) and end-expired concentration (FA) of a potent inhaled anesthetic. We examined the performance and quantitative aspects of the AGC. After IRB approval and individual informed consent, anesthesia in 24 ASA I-II patients undergoing abdominal or gynecological surgery was maintained with sevoflurane in O2/air with a target FIO2 of 40 % and a target sevoflurane FA (FAsevo) of 2.0 %. ⋯ Consequently, both FGF and the choice of speed become factors that influence agent usage. After 15 min, a 300 mL min(-1) maintenance FGF reduces agent usage to near closed-circuit conditions. This new addition to our automated low flow armamentarium helps to reduce anesthetic waste, cost, and pollution, while minimizing the ergonomic burden of low flow anesthesia.
-
Automated anesthesia which may offer to the physician time to control hemodynamic and to supervise neurological outcome and which may offer to the patient safety and quality was until recently consider as a holy grail. But this field of research is now increasing in every component of general anesthesia (hypnosis, nociception, neuromuscular blockade) and literature describes some successful algorithms - single or multi closed-loop controller. ⋯ Literature contains many randomized trials comparing manual and automated anesthesia and shows feasibility and safety of this system. Automation could quickly concern other aspects of anesthesia as fluid management and this review proposes an overview of closed-loop systems in anesthesia.
-
Anaesth Intensive Care · May 2016
Comparative StudyPotential rapid solutions to maintain ventilation in the event of anaesthesia machine failure with no access to the patient's airway.
Anaesthesia machine failure requires rapid solutions to maintain ventilation and anaesthesia. During procedures with poor access to the patient's airway, it may not be possible to use a self-inflating mechanical ventilation device (SIMVD) for emergency ventilation, and alternative solutions are needed. We evaluated five methods for rescue ventilation using a patient simulator. ⋯ In Method 3 ventilation was achieved with minimal rebreathing of expiratory gas, but with no inhalational agent. Methods 4 and 5 led to rebreathing. Our findings indicate that Methods 1 or 2 are the preferred rapid solutions to maintain ventilation and inhalational anaesthesia in the event of anaesthesia machine failure where there is poor airway access.