Articles: amyotrophic-lateral-sclerosis-pathology.
-
Annals of neurology · Feb 2016
Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions.
Despite evidence suggesting that the cerebellum may be targeted in amyotrophic lateral sclerosis (ALS), particularly in cases with repeat expansions in the ATXN2 and C9ORF72 genes, the integrity of cerebellar neurons has yet to be examined. The present study undertakes a histopathological analysis to assess the impact of these repeat expansions on cerebellar neurons and determine whether similar cerebellar pathology occurs in sporadic disease. ⋯ The present study has established a selective loss of Purkinje cells in the cerebellar vermis of ALS cases with intermediate repeat expansions in the ATXN2 gene, suggesting a divergent pathogenic mechanism independent of upper and lower motor neuron degeneration in ALS. We discuss these findings in the context of large repeat expansions in ATXN2 and spinocerebellar ataxia type 2, providing evidence that intermediate repeats in ATXN2 cause significant, albeit less substantial, spinocerebellar damage compared with longer repeats in ATXN2.
-
Canine degenerative myelopathy (CDM) represents a unique naturally occurring animal model for human amyotrophic lateral sclerosis (ALS) because of similar clinical signs, neuropathologic findings, and involvement of the superoxide dismutase 1 (SOD1) mutation. A definitive diagnosis can only be made postmortem through microscopic detection of axonal degeneration, demyelination and astroglial proliferation, which is more severe in the dorsal columns of the thoracic spinal cord and in the dorsal portion of the lateral funiculus. Interestingly, the muscle acetylcholine receptor complexes are intact in CDM prior to functional impairment, thus suggesting that muscle atrophy in CDM does not result from physical denervation. ⋯ The importance of SOD1 expression remains unclear, while oxidative stress and denatured ubiquinated proteins appear to play a crucial role in the pathogenesis of CDM. In this updated narrative review we performed a systematic search of the published studies on CDM that may shed light on the pathophysiological mechanisms of human ALS. A better understanding of the factors that determine the disease progression in CDM may be beneficial for the development of effective treatments for ALS.
-
In motor neuron diseases, there is a prolonged period of time before any clinical symptoms begin to appear. During this time, distal axonal degeneration, or "dying back" axonopathy, begins to occur before the onset of clinical symptoms and motor neuron death. This preclinical degeneration is a hallmark of motor neuron diseases in both animal models and human patients. ⋯ By 60days of age, there was a significant "dying back" phenomenon at the caudal region while the rostral region remained intact. The longer axons innervating the caudal region appear to be more susceptible to degeneration in the SOD1 mouse indicating that the axonal degeneration of motor neurons innervating type II fibers is a length-dependent process. Additionally, we identified how the simplicity of the LTN-CMM system offers a better method to investigate axon degeneration in an ALS mouse model and may be used to investigate possible therapeutic compounds for axon protection and regeneration.
-
Chinese Med J Peking · Jan 2016
Elimination Rate of Serum Lactate is Correlated with Amyotrophic Lateral Sclerosis Progression.
Mitochondrial dysfunction plays an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). We aimed to demonstrate mitochondrial dysfunction in ALS using a lactate stress test and to examine the relationship between mitochondrial dysfunction with motor deterioration. ⋯ There is a potential linear relationship between ER and motor deterioration in ALS. Slower ER might be associated with faster disease progression.
-
NeuroImage. Clinical · Jan 2016
Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study.
Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. ⋯ The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.