Articles: ventilators.
-
Lung protective ventilation aims at limiting lung stress and strain. By reducing the amount of pressure transmitted by the ventilator into the lungs, diaphragm neurostimulation offers a promising approach to minimize ventilator-induced lung injury. This study investigates the physiologic effects of diaphragm neurostimulation in acute respiratory distress syndrome (ARDS) patients. The hypothesis was that diaphragm neurostimulation would improve oxygenation, would limit the distending pressures of the lungs, and would improve cardiac output. ⋯ This proof-of-concept study showed the feasibility of short-term diaphragm neurostimulation in conjunction with mechanical ventilation in ARDS patients. Diaphragm neurostimulation was associated with positive effects on lung mechanics and on hemodynamics.
-
Pediatr Crit Care Me · Mar 2024
Noninvasive Neurally Adjusted Ventilatory Assist in Infants With Bronchiolitis: Respiratory Outcomes in a Single-Center, Retrospective Cohort, 2016-2018.
To describe our experience of using noninvasive neurally adjusted ventilatory assist (NIV-NAVA) in infants with bronchiolitis, its association with the evolution of respiratory effort, and PICU outcomes. ⋯ In this single-center retrospective cohort, in infants with bronchiolitis who were considered to have failed first-tier noninvasive respiratory support, the use of NIV-NAVA was associated with a rapid decrease in respiratory effort and a 9% intubation rate.
-
Am. J. Respir. Crit. Care Med. · Mar 2024
Adjustments of Ventilator Parameters During Operating Room to ICU Transition and 28-Day Mortality.
Rationale: Lung-protective mechanical ventilation strategies have been proven beneficial in the operating room (OR) and the ICU. However, differential practices in ventilator management persist, often resulting in adjustments of ventilator parameters when transitioning patients from the OR to the ICU. Objectives: To characterize patterns of ventilator adjustments during the transition of mechanically ventilated surgical patients from the OR to the ICU and assess their impact on 28-day mortality. ⋯ Concomitantly, respiratory rates increased (+5.0 breaths/min [2.0 to 7.5]; P < 0.001), resulting overall in slightly higher mechanical power (MP) in the ICU (+0.7 J/min [-1.9 to 3.0]; P < 0.001). In adjusted analysis, increases in MP were associated with a higher 28-day mortality rate (adjusted odds ratio, 1.10; 95% confidence interval, 1.06-1.14; P < 0.001; adjusted risk difference, 0.7%; 95% confidence interval, 0.4-1.0, both per 1 J/min). Conclusion: During transition of mechanically ventilated patients from the OR to the ICU, ventilator adjustments resulting in higher MP were associated with a greater risk of 28-day mortality.
-
Am. J. Respir. Crit. Care Med. · Mar 2024
Editorial CommentIs Mechanical Power the One Ring to Rule Them All?
-
Background and Objectives: This study aimed to assess the value of a novel prognostic model, based on clinical variables, comorbidities, and demographic characteristics, to predict long-term prognosis in patients who received mechanical ventilation (MV) for over 14 days and who underwent a tracheostomy during the first 14 days of MV. Materials and Methods: Data were obtained from 278 patients (66.2% male; median age: 71 years) who underwent a tracheostomy within the first 14 days of MV from February 2011 to February 2021. Factors predicting 1-year mortality after the initiation of MV were identified by binary logistic regression analysis. ⋯ Based on the maximum Youden index, the cut-off value for predicting mortality was set at ≥2, with a sensitivity of 67.4% and a specificity of 76.3%. Conclusions: The tracheostomy-ProVent score is a good predictive tool for estimating 1-year mortality in tracheostomized patients undergoing MV for >14 days. This comprehensive model integrates clinical variables and comorbidities, enhancing the precision of long-term prognosis in these patients.