Articles: brain-injuries.
-
The modified Brain Injury Guidelines (mBIG) were developed to improve care of patients with traumatic brain injury (TBI). This study aimed to assess if utilization of mBIG by neurosurgeons would improve TBI patient throughput at a Level I trauma center, particularly for patients meeting mBIG 1 criteria. ⋯ The mBIG 1 criteria were safe and improved low-risk TBI patient throughput at a Level I trauma center. Neurosurgical involvement may be beneficial to the mBIG while still facilitating significant resource savings.
-
Patients with moderate traumatic brain injury (mTBI) are under the threat of intracranial hypertension (IHT). However, it is unclear which mTBI patient will develop IHT and should receive intracranial pressure (ICP)-lowering treatment or invasive ICP monitoring after admission. The purpose of the present study was to develop and validate a prediction model that estimates the risk of IHT in mTBI patients. ⋯ A prediction model based on baseline parameters was found to be highly sensitive in distinguishing mTBI patients with GCS score of 9-11 who would suffer IHT. The high discriminative ability of the prediction model supports its use in identifying mTBI patients with GCS score of 9-11 who need ICP-lowering therapy or invasive ICP monitoring.
-
This study aimed to characterize long-term cerebral perfusion pressure (CPP) trajectory in traumatic brain injury (TBI) patients and construct an interpretable prediction model to assess the risk of unfavorable CPP evolution patterns. ⋯ This study identified 2 CPP trajectory groups associated with elevated risk and 3 with reduced risk. PaCO2 might be a strong predictor for the unfavorable CPP class. The ANN model achieved the primary goal of risk stratification, which is conducive to early intervention and individualized treatment.
-
Journal of neurotrauma · Nov 2024
Intravenous administration of anti-CD47 antibody augments hematoma clearance, mitigates acute neuropathology, and improves cognitive function in a rat model of penetrating traumatic brain injury.
Traumatic brain injury (TBI)-induced intracerebral hematoma is a major driver of secondary injury pathology such as neuroinflammation, cerebral edema, neurotoxicity, and blood-brain barrier dysfunction, which contribute to neuronal loss, motor deficits, and cognitive impairment. Cluster of differentiation 47 (CD47) is an antiphagocytic cell surface protein inhibiting hematoma clearance. This study was designed to evaluate the safety and efficacy of blockade of CD47 via intravenous (i.v.) administration of anti-CD47 antibodies following penetrating ballistic-like brain injury (PBBI) with significant traumatic intracerebral hemorrhage (tICH). ⋯ Spatial learning performance revealed significant deficits in all injured groups, which were significantly improved by the last testing day. Anti-CD47 antibody treated rats showed significantly improved attention deficits, but not retention scores. These results provide preliminary evidence that blockade of CD47 using i.v. administration of anti-CD47 antibodies may serve as a potential therapeutic for TBI with ICH.