Articles: brain-injuries.
-
Randomized Controlled Trial
Impact of continuous hypertonic (NaCl 20%) saline solution on renal outcomes after traumatic brain injury (TBI): a post hoc analysis of the COBI trial.
To evaluate if the increase in chloride intake during a continuous infusion of 20% hypertonic saline solution (HSS) is associated with an increase in the incidence of acute kidney injury (AKI) compared to standard of care in traumatic brain injury patients. ⋯ Despite a significant increase in chloride intake, a continuous infusion of HSS was not associated with AKI in moderate-to-severe TBI patients. Our study does not confirm the potentially detrimental effect of chloride load on kidney function in ICU patients.
-
Journal of neurotrauma · Jan 2023
Randomized Controlled TrialMilnacipran ameliorates executive function impairments following frontal lobe traumatic brain injury in male rats: a multimodal behavioral assessment.
Traumatic brain injuries (TBIs) affect more than 10 million patients annually worldwide, causing long-term cognitive and psychosocial impairments. Frontal lobe TBIs commonly impair executive function, but laboratory models typically focus primarily on spatial learning and declarative memory. We implemented a multi-modal approach for clinically relevant cognitive-behavioral assessments of frontal lobe function in rats with TBI and assessed treatment benefits of the serotonin-norepinephrine reuptake inhibitor, milnacipran (MLN). ⋯ Both AST tests revealed significant deficits in TBI+VEH rats, seen as elevated total trials and errors (p < 0.05), which generally normalized in MLN-treated rats (p < 0.05). This first simultaneous dual AST assessment demonstrates oAST and dAST are sufficiently sensitive and robust to detect subtle attentional and cognitive flexibility executive impairments after frontal lobe TBI in rats. Chronic MLN administration shows promise for attenuation of post-TBI executive function deficits, thus meriting further investigation.
-
J Neurosurg Anesthesiol · Jan 2023
Randomized Controlled TrialComparison of Equiosmolar Doses of 7.5% Hypertonic Saline and 20% Mannitol on Cerebral Oxygenation Status and Release of Brain Injury Markers During Supratentorial Craniotomy: A Randomized Controlled Trial.
Hyperosmolar therapy is the mainstay of treatment to reduce brain bulk and optimize surgical exposure during craniotomy. This study investigated the effect of equiosmolar doses of 7.5% hypertonic saline (HTS) and 20% mannitol on intraoperative cerebral oxygenation and metabolic status, systemic hemodynamics, brain relaxation, markers of cerebral injury, and perioperative craniotomy outcomes. ⋯ The conclusion is that 7.5% HTS has a more beneficial effect on cerebral oxygenation than an equiosmolar dose of 20% mannitol during supratentorial craniotomy, yet no clear-cut clinical superiority of either solution could be demonstrated.
-
J Neurosurg Anesthesiol · Jan 2023
Randomized Controlled TrialKetofol as an Anesthetic Agent in Patients With Isolated Moderate to Severe Traumatic Brain Injury: A Prospective, Randomized Double-blind Controlled Trial.
The effects of ketofol (propofol and ketamine admixture) on systemic hemodynamics and outcomes in patients undergoing emergency decompressive craniectomy for traumatic brain injury (TBI) are unknown and explored in this study. ⋯ Compared with propofol, ketofol for induction and maintenance of anesthesia during decompressive surgery in patients with moderate/severe TBI was associated with improved hemodynamic stability, lower vasopressor requirement, and similar brain relaxation.
-
Journal of neurotrauma · Jan 2023
Randomized Controlled TrialUse of olanzapine to treat agitation in traumatic brain injury: a series of n-of-one trials.
Agitation is common during post-traumatic amnesia (PTA) following traumatic brain injury (TBI) and is associated with risk of harm to patients and caregivers. Antipsychotics are frequently used to manage agitation in early TBI recovery despite limited evidence to support their efficacy, safety, and impact upon patient outcomes. The sedating and cognitive side effects of these agents are theorized to exacerbate confusion during PTA, leading to prolonged PTA duration and increased agitation. ⋯ Importantly, administration of olanzapine during PTA may lead to increased patient confusion, possibly prolonging PTA. When utilizing olanzapine, physicians must therefore balance the possible advantages of agitation management with the possibility that the patient may never respond to the medication and may experience increased confusion, longer PTA and potentially poorer outcomes. Further high-quality research is required to support these findings and the efficacy and outcomes associated with the use of any pharmacological agent for the management of agitation during the PTA period.