Articles: eicosapentaenoic-acid-analogs-derivatives.
-
Elevated triglyceride (TG) levels have been linked to residual atherosclerotic cardiovascular risk in patients with controlled low-density lipoprotein cholesterol. However, outcome trials testing TG-lowering agents have failed to demonstrate cardiovascular risk reduction in statin-treated subjects. One such example is the recent STRENGTH trial, which tested mixed omega fatty acids (n3-FAs, 4 g/d) in high-risk patients with elevated TGs. ⋯ In high-risk patients, IPE reduced a composite of cardiovascular events (25%, P < .001) in a manner not predicted by TG lowering. Benefits with IPE appear linked to broad pleiotropic actions associated with on-treatment eicosapentaenoic acid levels. These studies indicate that although TGs are a potential biomarker of cardiovascular risk, there is no evidence that TG lowering itself is an effective strategy for reducing such risk.
-
Treatment with icosapent ethyl 4 g/day, a highly purified and stable ethyl ester of eicosapentaenoic acid (EPA), demonstrated a significant reduction in atherosclerotic cardiovascular disease (ASCVD) events and death in REDUCE-IT. However, analyses of REDUCE-IT and meta-analyses have suggested that this clinical benefit is greater than can be achieved by triglyceride reduction alone. EPA therefore may have additional pleiotropic effects, including anti-inflammatory and anti-aggregatory mechanisms. ⋯ Incorporation of EPA into phospholipid bilayers influences membrane structure and may help to prevent cardiac arrhythmias. Clinically, this may translate into improved vascular health, including regression of atherosclerotic plaque. Overall, EPA has a range of pleiotropic effects that contribute to a reduction in ASCVD.
-
Icosapent ethyl (IPE) is approved for the prevention of major adverse cardiovascular events (MACE) in patients with hypertriglyceridemia. However, due to budget constraints, access to IPE will inevitably be limited to a fraction of eligible patients. To help maximize value for money spent, we estimated the number of preventable MACE when providing IPE for primary versus secondary prevention. ⋯ Prioritizing IPE therapy for patients with an established cardiovascular disease may provide significantly more value for money than primary prevention.
-
Postgraduate medicine · Jan 2021
ReviewThe case for adding eicosapentaenoic acid (icosapent ethyl) to the ABCs of cardiovascular disease prevention.
The high-purity eicosapentaenoic acid (EPA) prescription fish oil-derived omega-3 fatty acid (omega-3), icosapent ethyl (IPE), was recently approved by the United States Food and Drug Administration (FDA) for cardiovascular disease (CVD) prevention in high-risk patients. This approval is based on the 25% CVD event risk reduction observed with IPE in the pre-specified primary composite endpoint (cardiovascular [CV] death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or hospitalization for unstable angina) in the landmark Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT). Notably, this reduction in CVD event risk with IPE was an incremental benefit to well-controlled low-density lipoprotein cholesterol; patients in REDUCE-IT had elevated triglyceride (TG) levels (135-499 mg/dL) and either had a history of atherosclerotic CVD or diabetes with additional CV risk factors. ⋯ We offer our perspective and rationale for why this evidence-based EPA-only formulation, IPE, should be added to the 'E' in the ABCDEF methodology for CV prevention. We provide multiple lines of evidence regarding an unmet need for CVD prevention beyond statin therapy, IPE clinical trials, IPE cost-effectiveness analyses, and proposed pleiotropic (non-lipid) mechanisms of action of EPA, as well as other relevant clinical considerations. See Figure 1 for the graphical abstract.[Figure: see text].